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In these lectures we aim at giving the reader a first glimpse at the so called random matrix ap-
proach in number theory. We also wish to illustrate the use of probabilistic ideas and techniques in
analytic number theory, more specifically in understanding the distribution of values of some arith-
metic functions which have to do with prime numbers, whose distribution is not random.

In probability theory, the Gaussian distribution plays an ubiquitous role: it is a universal distri-
bution which emerges through the central limi theorem. Hence it is not surprising to see it appear in
some of the celebrated limit theorems of analytic number theory, such as the Erdős-Kac central limit
theorem for the number of distinct prime divisors of an integer and Selberg’s central limit theorem for
the logarithm of the Riemann zeta function on the critical line. The first thing we shall do is to put
these statements under a more probabilistic looking form by associating with them, in a natural way, a
sequence of arithmetically defined random variables or probability measures. But from a probabilistic
point of view, these limit theorems do not look so natural, in the sense that they do not fit in a general
probabilistic framework from which we could deduce these limit theorems (e.g. the central limit theo-
rem for sums of independent random variables). So one tries to build a simple probabilistic model, in
the sense that it is based on some independence assumption concerning the behaviour of prime num-
bers which we know does not exactly hold, but which we hope is close enough to the reality (let us
say asymptotically true), so that it predicts the correct fluctuations. We shall give a couple of standard
results which justify the choice of these probabilistic models. But we shall also see how these models
fail to capture the true nature of our arithmetic sequences. We believe that this phenomenon is at the
heart of the moments conjecture of Keating and Snaith.

The conjecture of Keating and Snaith is central in this lecture: it is a conjecture about the moments
of the Riemann zeta function on the critical line (or equivalently about the Fourier transform of the
logarithm of zeta) using random matrix theory. The final form of this conjecture is a mixture of two
components: one purely arithmetic and one purely group theoretic (random unitary matrices). Why
this conjecture, which has been extensively checked numerically and proved in the function field case,
is true remains a mystery. We will show that this phenomenon is not an isolated one and that it is shared
with other arithmetic objects.

Why this random matrix connection? This brings us to another universal distribution in probability,
but a distribution which mathematicians have only recently been able to prove to be a universal law of
nature: the sine kernel point process. This remarkable point process emerges asymptotically in the local
(or microscopic) distribution of eigenvalues of the Gaussian Unitary Ensemble (GUE) or the Circular
Unitary Ensemble (CUE). And many other ensemble of random matrices (this is the remarkable works
initiated by Tao and Vu on the one hand, and by Erdős, Schlein, Yau and Yin on the other hand). In
1972, Montgomery conjectured that the zeros of the Riemann zeta function on the critical line also
follow this distribution. This seems consistent with a Polya-Hilbert spectral interpretation of the zeros
of the Riemann zeta function. Because of the importance of the sine kernel point process emerging from
random matrix theory, we shall devote some part of the lecture to prove how it is obtained in random
matrix theory. And then we give a totally probabilistic proof of the results by Keating and Sanith, which
in fact will give many other new results.

We shall conclude this lecture with a probabilistic attempt to prove Ramachandra’s conjecture,
which is a statement about the values taken by the Riemann zeta function on the critical line. We
shall note that this can be viewed as a local limit type theorem statement. This forces us to develop a
new framework which does not rely on sums of (independent) random variable. We are able to prove
within this framework an analogue of Ramachandra’s conjecture for the corresponding random ma-
trix statistics, the stochastic zeta function. As of today, we are only able to give a conditional proof of
Ramachandra’s conjecture (but a quantitative version of it).

These notes contain references which are by no means complete. The first Chapter is mostly from
works I have done in collaboration with Emmanuel Kowalski and I have also used there some material
from Emmanuel Kowalski’s lecture notes1 on probabilistic number theory. In fact, the reader can look
at these notes for a classical proof of the Erdős-Kac theorem and for a proof of Selberg’s central limit
theorem. The random matrix part presentation is part of an ongoing‘ project with Joseph Najnudel.

1 https://people.math.ethz.ch/~kowalski/probabilistic-number-theory.pdf

https://people.math.ethz.ch/~kowalski/probabilistic-number-theory.pdf
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CHAPTER 1

Independence vs dependence

1. Two fundamental conjectures

We start by presenting the conjectured relations between random matrices and the Riemann zeta
function through two of the most striking conjectures: Montgomery’s pair correlation conjecture and
Krating-Snaith’s moments conjecture. In these notes, we shall give detailed proofs for the random
matrix or probabilistic results and refer the reader to the volume [21] for more details and references. It
was in 1972 that Montgomery conjectured that the distribution of the zeros of the Riemann zeta function
on the critical line are similar to those of large random matrices. This then seemed to support the Polya-
Hilbert philosophy for a spectral interpretation for the zeros of the Riemann zeta function (although
today this has to be more nuanced given all recent results on universality in random matrix theory).
In 1980’s, A. Odlyzko made extensive numerical computations which seem to support Montgomery’s
conjecture. Then in the late 1990’s, Katz and Sarnak proved in a gigantic work the conjectures in the
function field case (i.e. zeta functions over finite fields). And then in 2000, Keating and Snaith used
the very brave heuristic that the distribution of values of the Riemann zeta function on the critical line
can be modeled by the value distribution of the characteristic polynomial of random unitary matrices
on the unit circle in the n limit. They used this "philosophy" to make a guess or conjecture on the
moments of the Riemann zeta function on the critical line, a problem on which analytic number theorists
have been stuck for about a century. Since this seminal work, many research papers have studied the
characteristic polynomial of random unitary matrices and it is now an object of interest in its own,
with connections to mathematical physics, Gaussian multiplicative chaos, combinatorics, branching
processes, etc. For some of the fundamental results, one can find four or five different proofs using
totally different approaches: the most striking one being the case of ratios of factors of characteristic
polynomials for which there exist results using representation theory, supersymmetry, classical analysis,
probability theory, etc. It should be noted that as one can expect, the problems have also become more
complex over time.

The goal of this lecture is to try understand some of these conjectures and connections using prob-
abilistic models and ideas. Hence the focus will be essentially on probabilistic techniques.

1.1. The Montogomery conjecture. It has been well known since Euclide that there are infinitely
many prime numbers. But how many are there up to a value x, or in other words is there an asymptotic
for

π(x) := #{p 6 x, p prime}?

THEOREM 1.1 (The prime number theorem (1896)). We have

π(x) ∼
x→∞

Li(x) =
∫ x

2

dt
log t

∼ x
log x

.

When x is large, the probability that a number n in the vicinity of x is a prime is approximately
1/ log x.
There are many open problems on prime numbers: e.g. the twin prime conjecture which states that

#{n 6 x : n and n + 2 are prime} ∼ C
x

log2x

as x → ∞, where

C = 2 ∏
p>2

(
1− 1

(p− 1)2

)
≈ 1.3202 · · ·

One important object related to the distribution of prime numbers is the Riemann zeta function (see
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[28] for more details and proofs). In what follows s = σ + it with σ, t ∈ R. The Riemann zeta function
is defined as

ζ(s) =
∞

∑
n=1

1
ns , σ = Re(s) > 1.

The sum is absolutely convergent for σ > 1 and it is uniformly convergent for Re(s) ≥ 1 + δ for any
δ > 0. It then follows that ζ(s) is holomorphic in the domain σ > 1. The function is connected to prime
numbers through the following Euler product representation.

THEOREM 1.2 (Euler product formula). If σ > 1 we have

ζ(s) = ∏
p

(
1− 1

ps

)−1

where the product runs over all primes p and the product is absolutely convergent.

PROOF. This is an analytic reformulation of the fundamental theorem of arithmetic which states
that every integer n can be decomposed as product of primes in a unique way (up to the order of the
factors). �

It is a very classical fact that the Riemann zeta function can be analytically continued to the whole
complex plane except at the point s = 1 where it has a simple pole, and satisfies a functional equation:

THEOREM 1.3. The ζ function has an analytic continuation to C except for a simple pole at s = 1 with
residue 1. Moreover,

πs/2ζ(s)Γ
( s

2

)
= π(1−)s/2ζ(1− s)Γ

(
1− s

2

)
and ζ(−2k) = 0 for k ≥ 1 and k ∈N.

It is sometimes more convenient to introduce the Riemann ξ function which is an entire function:

ξ(s) =
1
2

s(s− 1)πs/2ζ(s)Γ
( s

2

)
which is entire in C. The functional equation gives

ξ(s) = ξ(1− s).

We already know that ζ(s) 6= 0 for σ > 1 by the Euler product formula, and that Γ(s) 6= 0 for all s;
thus ξ(s) has no zeros when σ > 1. Moreover, the functional equation implies that ξ(s) has no zeros for
σ < 0. The zeros of ξ are all in the strip 0 ≤ σ ≤ 1 and they are the same as the zeros of ζ(s) in that
strip.
We may also note that if ρ is a zero of ξ(s) then 1− ρ is also a zero of ξ(s). Moreover, since ξ(s) = ξ(s̄)
then ρ̄ and 1− ρ̄ are also zeros of ξ(s). The zeros are thus symmetrically arranged about the line σ = 1/2
and the real axis.

The Riemann hypothesis is the statement that σ = 1
2 for all the non-trivial zeros of ξ(s). This

conjecture is of central importance in mathematics for understanding the distribution of the zeros of the
Riemann zeta function amounts to understanding the distribution of prime numbers: there are many
formulas relating the zeros to prime numbers (they are called explicit formulas in analytic number
theory).

Using the theory of entire functions of finite order, one can prove the following Hadammard factor-
ization for ξ(s):

(1) ξ(s) = e−Bs ∏
ρ

(
1− s

ρ

)
es/ρ

where ρ = β + iγ runs over the zeros of ζ(s) in the strip 0 ≤ β ≤ 1.
With the argument principle we can prove the following theorem. Let N(T) = #{ρ = β + iγ, 0 6

β 6 1, 0 6 γ 6 T}, i.e. N(T) denotes the number of zeros ρ in the rectangle whose base is the line [0, 1]
and whose height is T.
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THEOREM 1.4 (Riemann-von Mangoldt estimate). If T is not an ordinate of a zero of ζ(s), then

N(T) =
T

2π
log

T
2π
− T

2π
+ O(log T).

The following conjecture about the distribution of the zeros of the Riemann zeta function on the
critical line is at the heart of the connection between number theory and random matrix theory.

THEOREM 1.5 (Montgomery, 1972). We assume that the Riemann hypothesis is satisfied. We note 1
2 + itn

then n-th zero of the zeta function with tn ≥ 0. We define wn as

wn =
tn

2π
log

tn

2π
.

Then for f ∈ S (R) such that supp f̂ ⊂ [−1, 1] one has

lim
N→∞

1
N ∑

16m 6=n6N
f (ωm −ωn) =

∫ ∞

−∞
f (x)R2(x)dx,

where

R2(x) = 1−
(

sin(πx)
πx

)2

.

CONJECTURE 1.6 (Montgomery, 1972). The above holds without any condition on the support of the
Fourier transform of the test function f .

The connection with random matrix theory occurred to Montgomery after discussing with Dyson.
Indeed Dyson had considered similar computations in random matrix theory. We state quickly basic
facts we need to illustrate the connection but we shall come back later with more rigour and details on
these random matrix aspects.

The random matrix model Dyson considered is the unitary group U(N) equipped with the Haar
measure. The Haar measure on U(N) induces a probability distribution for the angles of the eigenval-
ues, called eigenangles, as follows: U ∈ U(N) chosen according to the Haar measure has N eigenvalues
(eiθ1 , · · · , eiθN ) and the joint probability density of (θ1, · · · , θN) on [0, 2π)N (or alternatively on (−π, π])
is

p(θ1, · · · , θN) =
1

(2π)N N!
∏

16j<k6N

∣∣∣eiθj − eiθk
∣∣∣2.

Let f be a function on U(N) such that ∀U ∈ U(N) and A ∈ U(N),

f (U∗AU) = f (A);

we then have ∫
U(N)

f (A)dµHaar ≡ EN [ f (A)]

=
∫
[0,2π]N

f (eiθ1 , · · · ,iθN )p(θ1, · · · , θN)dθ1 · · · dθN .

For instance, for U ∈ U(N) with eigenvalues denoted by eiθ1 , · · · , eiθN we could define

f (eiθ1 , · · · ,iθN ) =
N

∏
k=1

(1− eiθk ).

For f a suitable test function,

lim
N→∞

EN

[
1
N ∑

16m 6=n6N
f
(
(θm − θn)

N
2π

)]
=
∫ ∞

−∞
f (x)R2(x)dx,

where

R2(x) = 1−
(

sin(πx)
πx

)2

.

Hence it seems that the so called pair correlation statistics coincide for both the rescaled zeros of the
Riemann zeta function and for the rescaled eigenvalues of random unitary matrices. The so called GUE
conjecture for the Riemann zeta function states that in fact the point process consisting of the rescaled
zeros of the Riemann zeta function and the rescaled eigenangles have the same correlation functions
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of all orders and hence have the same distribution. We shall give a precise meaning to the notion of
correlation functions in the next chapter.

Is there a deep hidden picture which could explain this striking analogy? In light of recent results
on universality, one might be less enthusiastic than a couple of decades ago. Indeed it has been ob-
served that for many models of random matrices, the eigenvalues have a limiting short-scale behavior
when the dimension goes to infinity which depends on the global symmetries of the model, but not
on its detailed features. For example, the Gaussian Orthogonal Ensemble (GOE), for which the ma-
trices are real symmetric with independent gaussian entries on and above the diagonal, corresponds
to a limiting short-scale behavior for the eigenvalues that is also obtained for several other models of
random real symmetric matrices. Similarly, the limiting spectral behavior of a large class of random
hermitian and unitary ensembles, including the Gaussian Unitary Ensemble (GUE, with independent,
complex gaussians above the diagonal), and the Circular Unitary Ensemble (CUE, corresponding to the
Haar measure on the unitary group of a given dimension), involves a remarkable random point process,
called the determinantal sine-kernel process. It is a point process for which the k-point correlation function
is given by (see next chapter for more details)

ρk(x1, . . . , xk) = det
(

sin(π(xp − xq))

π(xp − xq)

)
1≤p,q≤k

.

Montgomery’s conjecture states that the limiting short-scale behavior of the imaginary parts of the
zeros of the Riemann zeta function is also described by a determinantal sine-kernel process. On the one
hand this can be disappointing since many other systems have this feature but on the other hand this
similar behavior supports the conjecture of Hilbert and Pólya, who suggested that the non-trivial zeros
of the Riemann zeta functions should be interpreted as the spectrum of an operator 1

2 + iH with H an
unbounded Hermitian operator.

In the following section we are going to see that the connection can still be deepened.

1.2. The moments conjecture and the characteristic polynomial. A major breakthrough in the so-
called random matrix approach in number theory is the seminal paper of Keating and Snaith [14], where
they conjecture that the characteristic polynomial of a random unitary matrix, restricted to the unit cir-
cle, is a good and accurate model to predict the value distribution of the Riemann zeta function on
the critical line. In particular, using this philosophy, they were able to conjecture the exact asymptotics
of the moments of the Riemann zeta function, a result which was considered to be out of reach with
classical tools from analytic number theory. One simple and naive explanation for the success of the
characteristic polynomial as a random model to the Riemann zeta function comes from Montgomery’s
conjecture that asserts that the zeros of the Riemann zeta function on the critical line (after rescaling)
statistically behave like the eigenangles after rescaling (and hence the zeros of the characteristic poly-
nomial) of large random unitary matrices.

More precisely the characteristic polynomial is usually defined in the following way: for U ∈ U(n),
define Zn as:

Zn(X) = det
(

Id−U−1
n X

)
= det (Id−U∗n X) .(2)

It is not hard to see that

Zn(X) = (−X)n det(U∗n)Zn(
1
X̄
).

Note that some authors take the convention

Zn(X) = det (Id−UnX) ,

in which case

Zn(X) = (−X)n det(Un)Zn(
1
X
).

No matter the convention, the important common feature is that the zeros of Zn are on the unit circle
and that the unit circle plays the role of the critical line.

Now we want to illustrate the way the Keating-Snaith philosophy is used to make predictions for
the distribution of the values of the Riemann zeta function.
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So first what are typical value distribution problems for the Riemann zeta function? The first prob-
abilistic result is due to Selberg: if U is a uniform random variable in [0, 1], then1

log ζ( 1
2 + iTU)√

1
2 log log T

law→NC,

as n → ∞, and with NC = N1 + iN2 where N1,N2 denote two standard Gaussian distributions. In
other words the log of the Riemann zeta function behaves like a complex Gaussian distribution, with
very slowly growing variance. We do not provide a proof of this limi theorem but the way it is proven
is through the method of moments and more precisely through the following estimate:

THEOREM 1.7. If n is a positive integer, 0 < a < 1 and Ta/n ≤ x < T1/n, then there exists a constant
C = Cn,a such that for all sufficiently large T

1
T

∫ 2T

T

∣∣∣∣∣log ζ( 1
2 + it)− ∑

p6x

p−it
√

p

∣∣∣∣∣
2n

dt 6 C.

Here, following a classical heuristic in analytic number theory (see next section), p−it
√

p can be thought

of as Xp√
p where Xp is uniformly distributed on the unit circle and the (Xp)p are independent and it

follows from a very classical number theory estimate that

var

(
∑
p6x

Xp√
p

)
= ∑

p6x

1
p
∼ log log x.

A seemingly related problem but which in fact is much harder and still open is the Ramachandra
conjecture:

CONJECTURE 1.8 (Ramachandra). We have:

{ζ(1/2 + it), t ∈ R} = C.

We shall give a few results in this direction in relation with random matrix theory and the moments
conjecture that we now discuss.

Another open problem concerns the size or growth of ζ( 1
2 + it).

CONJECTURE 1.9 (Lindelöf).

ζ

(
1
2
+ it

)
= O(tε), ∀ε > 0.

It is known that the Riemann hypothesis implies the Lindelöf hypothesis. One way to attack this
conjecture is through the moments.

THEOREM 1.10. The Lindelöf hypothesis is equivalent to

1
T

∫ T

0

∣∣∣∣ζ (1
2
+ it

)∣∣∣∣2k
dt = O(Tε), ∀ε > 0, k = 1, 2, 3, · · · .

PROOF. A proof can be found in Titchmarsh’ book [28], chapter 13. �

The above explains why it is important to understand the moments and since Hardy and Littlewood
in 1918, number theorists have tried to estimate these moments. But as of today, only the cases k = 1
(1918) and k = 2 (1923) are known. In the 1990’s, Brian Conrey and his collaborators came with the
following conjecture:

CONJECTURE 1.11. For any positive integer k∫ T

0

∣∣∣∣ζ (1
2
+ it

)∣∣∣∣2k
dt ∼ akgkT(log T)k2

,(3)

1log ζ(s) is be defined as the unique version of the logarithm of zeta which is real on (1, ∞), well-defined and continuous
everywhere, except on the closed half-lines at the left of the zeros and the pole at 1 of zeta.
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where ak is the arithmetic factor

ak := ∏
p

(
1− 1

p

)k2

2F1

(
k, k, 1;

1
p

)
,(4)

and gk is an unknown factor for which very little is known:
(1) g(1) = 1/1! by Hardy and Littlewood.
(2) g(2) = 2/(2!)2 by Ingham.

It was also conjectured by Conrey and collaborators that g(3) = 42/(3!)2, and g(4) = 24024/(4!)2.

Keating and Snaith made the guess that the unknown factor gk/k2! should be predicted by random
matrix theory, and more precisely by the moments of the characteristic polynomial. They were able to
compute

MN(λ) =
∫

U(N)

∣∣∣ZN(U)(eiθ)
∣∣∣2λ

dµHaar, Re(λ) > −1
2

and managed to prove that

MN(λ) =
N

∏
j=1

Γ(j)Γ(2λ + j)
Γ2(j + λ)

∼ G2(1 + λ)

G(1 + 2λ)
Nλ2

as N → ∞. Then they made the analogy N ↔ log T to make the following full conjecture:

CONJECTURE 1.12 (Moment conjecture, Keating-Snaith). It is conjectured that:

1
T

∫ T

0

∣∣∣∣ζ (1
2
+ it

)∣∣∣∣2λ

dt ∼ a(λ)g(λ)(log T)λ2

where

g(λ) =
G2(1 + λ)

G(1 + 2λ)
, Re(λ) > −1

2
with G(1) = 1 and G(z + 1) = Γ(z)G(z). The function G is known as the Barnes function.

Moreover from their moment computation Keating and Snaith could deduce the following ana-
logue of Selberg’s central limit theorem for θ ∈ [0, 2π]:

log ZN(eiθ)√
1
2 log N

law→NC.

The methods they used to compute the moments, which is the main result on the random matrix
side, is the Selberg integrals. Indeed they write

ZN :=
N

∏
k=1

(1− e−iθk ),

where θ1, · · · , θ2 are the eigenvalues of U. For s ∈ C with Re(s) > 0, (in fact Re(s) > −1), Weyls’
integration formula gives

E[|ZN |s] =
1

(2π)nn!

∫
[0,2π]n

∣∣∣∣∣ n

∏
k=1

(1− e−iθk )

∣∣∣∣∣
s

∏
16j<h6n

∣∣∣eiθj − eiθh
∣∣∣2dθ1 · · · dθn.

Then they use the Selberg integrals

J(a, b, α, β, γ, n) =
∫

Rn ∏
16j<l6n

∣∣xj − xl
∣∣2γ

n

∏
j=1

(a + ixj)
−α(b− ixj)

−βdx1 · · · dxn

=
(2π)n

(a + b)(α+β)n−γn(n−1)−n

×
n

∏
j=0

Γ(1 + γ + jγ)Γ(α + β− (n + j− γ)γ− 1)
Γ(1 + j)Γ(α + jγ)Γ(β− jγ)

in the special case a = b = γ = 1.
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We shall propose in this lecture a totally different alternative approach to this result which does not
use Weyl’s integration formula. But for now let us explore a little more the computations by Keating
and Snaith:

E[|ZN |2λ] =
N

∏
j=1

Γ(j)Γ(j + 2λ)

Γ2(j + λ)
, Re(λ) > −1

2
.

Recall that the Barnes G-function is an entire function satisfying G(1) = 1 and

G(z + 1) = Γ(z)G(z) ∀z ∈ C,

and the zeros and located at the negative integers. We also have

G(1 + z) = (2π)z/2e−z(z+1)/2
∞

∏
k=1

{(
1 +

z
k

)k(
1 +

z
k

)z2/2
e−z
}

.

In particular for z ∈ C\Z− we have

N

∏
j=1

Γ(j + θ) =
G(1 + N + θ)

G(1 + θ)
, ∀θ ∈ C\Z− .

This implies the following for the expectation of |ZN |2λ

E[|ZN |2λ] =
G(1 + N)G(1 + N + 2λ)G2(1 + λ)

G(1 + 2λ)G2(1 + N + λ)
.

It is known (for instance [11]) that uniformly on compact sets of {(γ, δ) ∈ C×C, γ + δ /∈ Z−}
G(1 + N + γ + δ)G(1 + N)

G(1 + N + δ)G(1 + N + γ)
= (1 + N)γδ

(
1 + O

(
1
N

))
.

In our case γ = δ = λ we have

G(1 + N)G(1 + 2λ + N)

G2(1 + N + λ)
= (1 + N)λ2

(
1 + O

(
1
N

))
.

This implies that

lim
N→∞

1
Nλ2 E[|ZN |2λ] =

G2(1 + λ)

G(1 + 2λ)
.

With the notation

g(k) =
G2(1 + λ)

G(1 + 2λ)
,

we have ∀k ∈N

g(λ) =
(Γ(k)Γ(k− 1) · · · Γ(1))2

Γ(2k)Γ(2k− 1) · · · Γ(1) ,(5)

=
k−1

∏
j=0

j!
(j + k)!

.

Now let us try to explain at least heuristically the appearance of the arithmetic factor. If in the
moments conjecture we take λ = iu where u ∈ R, we can rephrase (3) in terms of Fourier transforms

(log T)u2︸ ︷︷ ︸
=exp[u2 log log T]

1
T

∫ T

0
exp[2iu log

∣∣∣ζ( 1
2 + it)

∣∣∣]dt︸ ︷︷ ︸
=E[exp(2iu log

∣∣∣ζ( 1
2+iTU)

∣∣∣)]
∼ a(iu)g(iu)

as T → ∞ and where U is a uniform random variable on [0, 1]. We note

a(iu) = lim
N→∞

a1(u, N)a2(u, N)

where

a1(u, N) = ∏
p6N

(1− p−1)
−u2

, a2(u, N) = ∏
p6N

2F1(iu, iu, 1; p−1).
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We then use the following formula of Mertens:

∏
p6N

(1− p−1) ∼
N→∞

e−γ(log N)−1

where γ is Euler’s constant. Now, if we note γN = 2(γ + log log N), N ≥ 2,

lim
N→∞

eu2γN /2a2(u, N) = a(iu).

Now let X be a random variable which is uniformly distributed on the unit circle, and let x ∈ R with
x > 1. We then have

E

[
exp

(
−2iu log

∣∣∣∣1− X√
x

∣∣∣∣)] = E

[∣∣∣∣1− X√
x

∣∣∣∣−2iu
]
= 2F1(iu, iu, 1; x−1).

Indeed, ∣∣∣∣1− X√
x

∣∣∣∣2 = 1 +
1
x
− 2 Re(X)√

x
> (1− x−1/2)2 > 0.

Next, Re(X) = cos(θ), where θ is uniform on [0, 2π]

E[eiu log |1−X/
√

x|−2
] =

1
2π

∫ 2π

0
(1 + x−1 − 2x−1/2 cos θ)

−iu
dθ

= 2F1(iu, iu, 1; x−1),

this comes from the integral representation of 2F1. Now, write

YN = ∑
p6N

log

(∣∣∣∣1− Xp√
p

∣∣∣∣−2
)

then it follows from the previous calculations that

eu2γN /2E[eiuYN ] = a(iu).

Here, (pit) were assumed to behave like independent random variables which are uniformly distributed
on the unit circle, but we know this is not true. The random matrix factor seems to be a correction factor
accounting for the dependency that this naive model ignores. And this phenomenon is not specific to
the Riemann zeta function.

2. The splitting phenomenon

In some sense, probabilistic number theory can be viewed as the study of fluctuations (e.g. central
limit theorem, local limit theorem, large deviations, etc.) of arithmetically defined sequences of ran-
dom variables or probability measures. One of the most famous results in this direction is Erdős-Kac
theorem:

THEOREM 2.1 (Erdős-Kac). For any positive integer n ≥ 1, let ω(n) denote the number of distinct prime
divisors of n. Then for any real numbers a < b, we have

lim
N→∞

1
N
|{1 ≤ n ≤ N : a ≤ ω(n)− log log N√

log log N
≤ b}| = 1√

2π

∫ b

a
e−x2/2dx.

One can easily interpret this as a convergence in law for a sequence of random variables which are
arithmetically defined. Indeed, consider ΩN = {1, · · · , N} with the uniform measure PN on it, and
define the random variable XN from ΩN to R by

XN =
ω(n)− log log N√

log log N
.

Then the Erdős-Kac theorem is the statement that XN converges in distribution to a standard Gaussian
random variable N .

It is very often possible to predict the behaviour of many such arithmetic variables or measures
with the help of simple probabilistic models. These probabilistic models are based on two relatively
simple results that we present now.

12



THEOREM 2.2. Let N ≥ 1 and ΩN = {1, · · · , N} endowed with the uniform probability measure PN .
Fix an an integer q ≥ 1 and denote by πq : Z −→ Z/qZ the canonical surjection which to n associates its
class modulo q. Let XN be the random variable which is defined on ΩN by XN(n) = πq(n) and with values in
Z/qZ. Then the random variables (XN) converge in law to the uniform probability measure µq on Z/qZ. More
precisely, for any function f : Z/qZ −→ C, we have

(6) |E[ f (XN)]−E[ f ]| ≤ 2
N
‖ f ‖1

where
‖ f ‖1 = ∑

a∈Z/qZ

| f (a)|.

PROOF. We have by definition

E[ f (XN)] =
1
N ∑

1≤n≤N
f (πq(n))

and

E[ f ] =
1
q ∑

a∈Z/qZ

f (a).

Next we note that
1
N ∑

1≤n≤N
f (πq(n)) = ∑

a∈Z/qZ

f (a)× 1
N ∑

1≤n≤N
n≡a(modq)

1.

Hence the last sum counts the number of integers m for which we have 1 ≤ mq+ a ≤ N, which is [N−a
q ].

Now the trivial estimate x− 1 ≤ [x] ≤ x for x ≥ 0 yields the desired bound

| 1
N ∑

1≤n≤N
f (πq(n))−

1
q ∑

a∈Z/qZ

f (a)| ≤ 2
N
‖ f ‖1.

�

In the special case where f (n) = 1{a}(πq(n)), we obtain∣∣∣∣PN(πq(n) = a)− 1
q

∣∣∣∣ ≤ 2
N

.

This is a non-trivial inequality as long as q is small enough compared with N. In particular, this shows
that for q fixed, the probability that an integer n ≤ N is congruent to a modulo q is approximately 1/N.
This asymptotic estimate justifies the commonly used heuristic that the probability that an integer is
divisible by a 2 or 3 is approximately 1/2 or 1/3. Hence one could start to think of a model of the
form ∑p≤N Bp, where the sum runs over prime numbers and where Bp is a Bernoulli random variable
defined as P[Bp = 1] = 1

p = 1− P[Bp = 0]. Next we would like to know whether it is reasonable
to assume that these Bernoulli random variables could be taken to be independent. This is indeed
asymptotically true as a consequence of the Chinese remainder theorem. Indeed it is a well known
fact that if q1 and q2 are two positive coprime integers, then the map Z/q1q2Z −→ Z/q1Z×Z/q2Z

x 7−→ (x(mod q1), x(mod q2)) is a ring isomorphism. This ring isomorphism can be interpreted as the
fact that the random variables πq1 and πq2 on ΩN are asymptotically independent, that is

lim
N→∞

PN(πq1(n = a), πq2(n) = b) =
1

q1q2
= ( lim

N→∞
PN(πq1(n) = a))( lim

N→∞
PN(πq2(n) = b)).

So it is reasonable to build a probabilistic model by assuming that divisibility by distinct primes are
independent events. We can summarize this in the following proposition:

PROPOSITION 2.3. Let N ≥ 1 and ΩN = {1, · · · , N} endowed with the uniform probability measure PN .
Let k ≥ 1 be an integer and fix q1 ≥ 1, · · · , qk ≥ 1 a family of coprime integers. As N → ∞, the random vector

(πq1 , · · · , πqk ) : n 7−→ (πq1(n), · · · , πqk (n))

13



from ΩN with values in Z/q1Z · · · ×Z/qkZ converges in law to the product of the uniform probability measures
µqi , or in other words converges to a random vector whose components are independent and uniformly distributed
on Z/qiZ, for 1 ≤ i ≤ k. We also have a quantitative statement as is Theorem 2.2: for any function

f : Z/q1Z · · · ×Z/qkZ −→ C,

we have

(7)
∣∣E[ f (πq1(n), · · · , πq1(n))]−E[ f ]

∣∣ ≤ 2
N
‖ f ‖1.

PROOF. The proof follows the same lines as the proof of Theorem 2.2 after noting that the Chinese
remainder theorem gives a ring isomorphism Z/q1Z · · · ×Z/qkZ −→ Z/qZ where q = q1 · · · q under
which the images of the product of the uniform measures µqi is µq. �

REMARK 2.4. It is important to note that the random variables πq1 and πq2 are not independent: it is not
true that

PN(πq1(n = a), πq2(n) = b) = PN(πq1(n) = a)PN(πq2(n) = b).

Independence only holds asymptotically. This is the source of many subtle behaviours in analytic number theory.

Now going back to our probabilistic model, we may assume that the Bernoulli variables Bp are in-
dependent. Consequently ZN = ∑p≤N Bp can be thought of as a probabilistic model for ω(n) (more pre-
cisely for the arithmetically defined random variable XN(n) = ω(n) defined on ΩN). Using Mertens’
estimates that ∑p≤N

1
p ∼ log log N, we have E[ZN ] = ∑p≤N

1
p ∼ log log N and var(ZN) = ∑p≤N(p(1−

p))−1 ∼ log log N. An application of the central limit theorem for independent random variables yields
that ZN−log log N√

log log N
converges in distribution to a standard Gaussian random variable. In fact one can

use this probabilistic model together with quantitative estimates as above to show that the moments
of are close to those of XN−log log N√

log log N
and ZN−log log N√

log log N
are asymptotically the same. But our point here is

different and we would rather illustrate the limitations of the probabilistic model and see where the in-
dependence assumption in the probabilistic model can go wrong when compared to the true arithmetic
sequence of random variables. We shall use for this a formula of Rényi and Turán:

PROPOSITION 2.5 (Rényi and Turán). We have the following asymptotic formula:

(8) EN [eitXN ] = (log N)eit−1 (Φ(t) + o(1)),

uniformly for t ∈ R and as N → ∞, with the factor Φ(t) given by

Φ(t) =
1

Γ(eit) ∏
p

(
1− 1

p

)eit (
1 +

eit

p− 1

)
,

where the Euler product is absolutely convergent.

The proof of the Rényi-Turán formula is much more difficult than the moments computation per-
formed to prove the Erdős-Kac central limit theorem and the content is actually much deeper (the value
t = π implies the prime number theorem). Formula (8) follows from the following deeper theorem
whose proof is based on the Selberg-Delange method applied to the Dirichlet series of yω(n)

∑
n≥1

yω(n)

ns = ∏
p

(
1 +

y
ps − 1

)
.

PROPOSITION 2.6 ([27], Section II.6, Theorem 1). For any A > 0, we have for any y ∈ C, with |y| ≤ A

∑
k≤n

yω(k) = n(log n)y−1(λ0(y) + O(1/ log n)),

where

λ0(y) =
1

Γ(y) ∏
p

(
1− 1

p

)y (
1 +

y
p− 1

)
and the constant in the O symbol only depends on A.
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The following discussion is based on [19]. In formula (8) one recognizes (log N)eit−1 as the char-
acteristic function of a Poisson random variable with parameter log log N. Since Φ(t/

√
log log N) →

Φ(0) = 1, the Erdős-Kac central limit theorem immediately follows from an application of Lévy’s cri-
terion for convergence in law. In fact this type of convergence is called mod-Poisson convergence and
there is now a well built general theory (of mod-phi convergence) from which one can deduce precise
large deviations estimates, speed of convergence, approximation in the total variation distance (see e.g.
[12], [2] and [6]) but we shall not touch upon this here. We would rather try to compare this with what
the probabilistic model ZN predicts. Indeed, a straightforward computation using the independence of
the Bernoulli variables shows that

E[eitZN ] = (log N)eit−1 ∏
p

(
1− 1

p

)eit (
1 +

eit

p− 1

)
.

Consequently the probabilistic model fails to capture the mod-Poisson phenomenon. This is coming
from the fact that the primes do not actually behave independently of each other and that the indepen-
dence assumption, while enough to predict the central limit theorem, fails to account for the real nature
of ω(n). At the level of non nomalized characteristic functions, extreme values play a more crucial role.

Now one may ask about an interpretation for the factor 1
Γ(eit)

. A natural explanation is that this
is a correction factor to the independence assumption made in the probabilistic model. But does this
factor correspond to some natural "model" as well? It is surprising and mysterious that the answer is
positive. Indeed, consider the symmetric group of order N, SN , endowed with the uniform measure,
and define on it the random variable `N that maps a permutation σ to the number of cycles in its cyclic
decompositions. Then it is well known in probability theory (see [1]) that `N has the same distribution
as ∑k≤N Bk where the Bk’s are independent Bernoulli random variables with parameters 1/k. Using the
product representation of 1/Γ(z), one obtains that

E[eit`N ] = Neit−1
(

1
Γ(eit)

+ o(1)
)

.

This can be added to the list of analogy between multiplicative properties of permutations and random
permutations. It remains an open problem to understand how permutations and primes can be mixed
to obtain the Rényi-Turán formula (see [19] for more examples and explicit proofs where the role of
random permutations appear in finite fields analogue).

As far as we are concerned, we would like to see whether the moments conjecture of Keating and
Snaith is another manifestation of the above splitting phenomenon. In fact the discussion we already
had above when explaining heuristically the moments conjecture shows that this is indeed the case.
The heuristic we used to define

YN = − ∑
p6N

log
(∣∣∣∣1− Xp√

p

∣∣∣∣)
as a random model for the modulus of the zeta function on the critical line can be justified by the
following result:

THEOREM 2.7. For T ≥ 0, let ΩT = [−T, T] be endowed with the uniform probability measure, that is
the Lebesgue measure divided by 2T (note that we could as well take ΩT = [0, T] equipped with dt/T). Let
XT = (Xp,T)p be the Ŝ1 ≡ ∏p S1 valued random variable on ΩT , given by

XT(t) = (p−it)p.

Then as T → ∞, the random variable XT converges in law to a random variable X = (Xp)p where the Xp are
independent and uniformly distributed on the unit circle S1.

PROOF. Since Ŝ1 is a compact Abelian group, Weyl’s criterion shows that the statement is equiva-
lent to the property that for any non trivial character χ : Ŝ1 −→ S1, we have

lim
T→∞

E[χ(Xp,T)] = 0.

But an elementary property of the product of compact groups and the general form of the characters of
S1 show that it is enough to prove that for characters χ of the form

χ(z) = ∏
p

z
mp
p ,
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for every finite non empty subset S of prime numbers, mp ∈ Z, mp 6= 0 and p ∈ S, and z = (zp)p ∈ Ŝ1.
This is now easily checked thanks to the elementary estimate that for r > 0, we have

|E[r−it]| ≤ min(1,
1

T| log r| ).

�

So we can see that there is an analogy between the case of ω(n) and the case of the Riemann zeta
function on the critical line. In the case of the Riemann zeta function, we have the random Euler product
which is sometimes called the stochastic zeta function. The heuristic on which this model is based
also comes from an equidistribution result for a sequence of arithmetically defined random variables
(Theorem 2.7). This model is enough to predict Selberg’s central limit theorem but is not enough for
the Fourier transform of log(ζ(1/2 + it)). As for ω(n), a correction factor is needed which seems to
account for the fact that primes are not behaving independently. In the case of ω(n), the correction
factor seems to find its source in a compact group: it is related to some statistic coming from random
permutations. In the case of the Riemann zeta function, it is conjectured that there is also a compact
group with uniform measure: the unitary group. It is still a very open question on which there has been
no significant progress to understand how the unitary group and primes should combine to obtain a
proof of the conjecture.
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CHAPTER 2

The limiting behavior of the eigenvalues of random unitary matrices

The results we shall present here are very classical, but in some places (most notably when it comes
to weak convergence of point processes) we have chosen our own proofs. For sake of completeness we
have also put in Appendix 1 the classical methods the way they are usually exposed (e.g. like in [21]).

1. Preliminary facts about the distribution of eigenvalues

In this section we consider the most natural model of random unitary matrices. We call U(n) the
unitary group of size n, that is the set of matrices U of size n such that UU∗ = U∗U = Id. Such matrices
also represent isometries of Cn, that is 〈u(x), u(y)〉 = 〈x, y〉 for all x, y ∈ Cn. Since for every x ∈ Cn we
have ‖u(x)‖ = ‖x‖, it is easily seen that U(n) is a compact Lie group. There exists on U(n) a natural
probability measure which is given by the following fundamental result:

PROPOSITION 1.1. Let G be a compact Lie group. There exists a unique probability measure P (also noted
µHaar or µH according to the context) on G (endowed with its Borel sigma algebra) such that for every Borel
measurable set A, and every g ∈ G, we have P(gA) = P(Ag) = P(A). The measure P is called the (probability)
Haar measure, or uniform measure, on G.

DEFINITION 1.2. Let n be a strictly positive integer, and endow U(n) with the Haar measure P. Then
(U(n), P) is called the Circular Unitary Ensemble of size n, and is noted CUE(n).

One can easily check that in the context of the above Proposition, ∀g ∈ G, ∀ f ∈ L1(G)∫
G

f (gh)dP(h) =
∫

G
f (hg)dP(h) =

∫
G

f (h)dP(h).

EXAMPLE 1.3. Let us consider the following examples.
(1) Let G be a finite group, G = {g1, · · · , gn} where the gi’s are distinct. Then

P =
1
n

n

∑
j=1

δgj .

is the Haar measure. Indeed, ∀g, ∀ f ∈ L1(G), one has

1
n

n

∑
j=1

f (gj) =
1
n

n

∑
j=1

f (ggi) =
1
n

n

∑
j=1

f (gig),

which comes from the fact that the map h 7→ hg from G → G is a bijection.
(2) U = {eiθ , −π < θ ≤ π} is an Abelian compact metric group. The normalized arc-length measure

dθ/2π is a Haar measure.

The following result is an immediate consequence of the definition of the Haar measure:

PROPOSITION 1.4. Let U be a deterministic matrix in U(n) and let M be a random matrix drawn from
CUE(n). Then MU, UM and UMU−1 are also in CUE(n).

Next we are interested in a very natural question in random matrix theory: what is the distribution
of the eigenvalues of matrices in CUE(n)? It is well known that if M ∈ U(n), then all its eigenvalues
are on the unit circle U. We can for instance order the eigenvalues in increasing order of the arguments
in (−π, π], for j ∈ {1, . . . , n},

λj(M) = eiθj(M),

where
−π < θ1(M) ≤ θ2(M) ≤ · · · ≤ θn(M) ≤ π.
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If all eigenvalues are distinct, we can define for each j ∈ {1, . . . , n}, the eigenvector vj(M) associated
with the eigenvalue λj(M). Of course such an eigenvector is not unique and is defined up to a multi-
plicative factor. We can define it in a unique manner if we take it of norm one and such that (say) its first
coordinate of largest modulus is real and strictly positive. Now let V(M) be a matrix whose columns are
the vectors v1(M), v2(M), · · · , vn(M). Since ‖vj(M)‖ = 1 for j ∈ {1, . . . , n} and since the eigenspaces
are orthogonal, we deduce that V(M) ∈ U(n). Moreover for j ∈ {1, . . . , n}, Mvj(M) = λj(M)vj(M),
which implies that

MV(M) = V(M)Λ(M),
where Λ(M) is the diagonal matrix whose (j, j)-th coefficient is λj(M). In other words,

M = V(M)Λ(M)(V(M))−1,

that is M is the conjugate of a diagonal matrix.
Next let us note U∗(n) the set of unitary matrices of order n having n distinct eigenvalues, and let

us note Dn the set of diagonal matrices of order n whose coefficients (on the diagonal) are in U, with
strictly increasing arguments in (−π, π]. Last define U+(n) to be the set of matrices in U(n) such that
for each column, the first coefficient with highest modulus is a strictly positive real number. The above
discussion shows that

Π : M 7→ (Λ(M), V(M))

is a bijection from U∗n to Dn ×U+(n), and the inverse bijection is given by

Π−1 : (Λ, V) 7→ VΛV−1.

If we identify Dn with

∆n := {(eiθ1 , . . . , eiθn),−π < θ1 < θ2 < · · · < θn ≤ π},
we have the following formula, called Weyl’s integration formula:

PROPOSITION 1.5. If M is in CUE(n), then a.s. M has n distinct eigenvalues. Moreover, the following
hold:

(1) The probability distribution of Λ(M) has density:

D(λ1, . . . , λn) =
1

Zn
∏

1≤j<k≤n
|λk − λj|2

w.r.t. the uniform measure on ∆n, Zn > 0 being a normalization constant.
(2) The distribution of V(M) is the push forward of the Haar measure on U(n) by the application which

multiplies each column by a complex number of modulus 1 in such a way that we obtain a matrix in
U+(n).

(3) The random variables Λ(M) and V(M) are independent.
Moreover if Λ ∈ Dn is distributed as in (1), and if U ∈ U(n) is Haar distributed and if Λ and U are independent,
then UΛU−1 ∈ CUE(n).

The above proposition shows that the eigenvalues of CUE(n) tend to repulse each other: if λ1, · · · , λn−1
are fixed, then the density D(λ1, . . . , λn) tends to zero when λn tends to one of the eigenvalues λ1, · · · , λn−1.

1.1. Correlation functions.

PROPOSITION 1.6. Let M ∈ CUE(n). The probability density function of Λ(M) w.r.t the uniform measure
on ∆n is equal to

D(λ1, . . . , λn) =
1

Zn
det((Aj,k)1≤j,k≤n),

where

Aj,k =
n−1

∑
`=0

(λjλk)
`.

PROOF. We use the classical formula for Vandermonde’s determinant:

∏
1≤j<k≤n

(λk − λj) = det(C),

where
Cj,k = λ

j−1
k .
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Now we apply this result to the conjugate of λ1, . . . , λn and use the fact that the determinant of a matrix
is equal to the determinant of its transpose to deduce that

∏
1≤j<k≤n

(λk − λj) = det(B),

where
Bj,k = λj

k−1
.

We now multiply both equalities to obtain

∏
1≤j<k≤n

|λk − λj|2 = det(BC),

where

(BC)j,k =
n

∑
`=1

Bj,`C`,k =
n

∑
`=1

λj
`−1

λ`−1
k ,

i.e.
(BC)j,k = Aj,k,

which is the desired result.
�

One can state this result under a slightly different form in a way that the ordering of the angles does
not matter.

THEOREM 1.7. Let M ∈ CUE(n) and let E be the set of its eigenvalues. For every bounded measurable
function F : Un → R, we have:

E

(
∑

µ1 6=µ2 6=···6=µn∈E
F(µ1, . . . , µn)

)
=

1
Z′n

∫
Un

ρn(λ1, . . . , λn)F(λ1, . . . , λn)dν(λ1) . . . dν(λn),

where Z′n > 0 is a normalization constant, ν is the uniform measure on U and

ρn(λ1, . . . , λn) = det
(
(K0(λj, λk))1≤j,k≤n

)
,

with

K0(λ, λ′) =
n−1

∑
`=0

(λλ′)`.

PROOF. We first need to check that

E

(
∑

µ1 6=µ2 6=···6=µn∈E
F(µ1, . . . , µn)

)
= E (G(λ1(M), . . . , λn(M))) ,

where
G(µ1, . . . , µn) = ∑

σ∈Sn

F(µσ(1), . . . µσ(n)),

which follows from the fact that the n-tuples (µ1, µ2, . . . , µn) of distinct elements of E are exactly the
n! permutations of (λ1(M), . . . , λn(M)). Now an application of the previous proposition with Weyl’s
integration formula yields

E

(
∑

µ1 6=µ2 6=···6=µn∈E
F(µ1, . . . , µn)

)
=

1
Zn

∫
∆n

G(λ1, . . . , λn)det((Aj,k)1≤j,k≤n)dα(λ1, . . . , λn),

where α is the uniform measure on ∆n. Hence

E

(
∑

µ1 6=µ2 6=···6=µn∈E
F(µ1, . . . , µn)

)
=

1
Z′n

∫
∆n

G(λ1, . . . , λn)ρn(λ1, . . . , λn)dν(λ1) . . . dν(λn),

where Z′n > 0 is another normalization constant. Now we deduce that the previous expectation is equal
to

1
Z′n

∑
σ∈Sn

∫
∆n

F(λσ(1), . . . , λσ(n))ρn(λ1, . . . , λn)dν(λ1) . . . dν(λn)
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=
1

Z′n
∑

σ∈Sn

∫
σ(∆n)

F(λ1, . . . , λn)ρn(λσ−1(1), . . . , λσ−1(n))dν(λ1) . . . dν(λn),

where σ(∆n) is the image of ∆n by the map

(λ1, . . . , λn) 7→ (λσ(1), . . . , λσ(n)).

Next we note that ρn is invariant under a permutation of the coordinates. Indeed when we permute
the elements of (λ1, . . . , λn), the rows and the columns of the matrix (K0(λj, λk))1≤j,k≤n are permuted
accordingly and hence the determinant does not change. The last expression is hence equal to

1
Z′n

∑
σ∈Sn

∫
σ(∆n)

F(λ1, . . . , λn)ρn(λ1, . . . , λn)dν(λ1) . . . dν(λn).

Now we also note that the sets σ(∆n) are pairwise disjoint and that their union is equal to

{(λ1, . . . , λn) ∈ Un, λ1 6= · · · 6= λn},

which is of full measure in Un w.r.t. the uniform measure. Consequently we have:

E

(
∑

µ1 6=µ2 6=···6=µn∈E
F(µ1, . . . , µn)

)
=

1
Z′n

∫
Un

ρn(λ1, . . . , λn)F(λ1, . . . , λn)dν(λ1) . . . dν(λn).

�

We shall see later that in fact the normalization constant Z′n is in fact equal to 1. The function
ρn(λ1, . . . , λn) gives information about the probability of finding an eigenvalue in the neighborhood of
the points λ1, . . . , λn. The function ρn : Un → R+ is called the n-point correlation function. One can go
backwards from there and compute r-point correlation functions for 1 ≤ r ≤ n.

PROPOSITION 1.8. With the notation above, for all r ∈ {1, . . . , n}, and for any bounded measurable func-
tion F from Ur into R, we have:

E

(
∑

µ1 6=µ2 6=···6=µr∈E
F(µ1, . . . , µr)

)
=

1
Z′n

∫
Ur

ρr(λ1, . . . , λr)F(λ1, . . . , λr)dν(λ1) . . . dν(λr),

where the function ρr from Ur to R+ satisfies the backwards induction relation:

ρr(λ1, . . . , λr) =
1

n− r

∫
U

ρr+1(λ1, . . . , λr, λ)dν(λ),

for all r ∈ {1, . . . , n− 1}.

PROOF. For 1 ≤ r ≤ n− 1, let us assume the result holds for r + 1. For all bounded and measurable
function G from Ur+1 to R, we have

E

(
∑

µ1 6=µ2 6=···6=µr+1∈E
G(µ1, . . . , µr+1)

)

=
1

Z′n

∫
Ur+1

ρr+1(λ1, . . . , λr+1)G(λ1, . . . , λr+1)dν(λ1) . . . dν(λr+1).

If F is the map from Ur to R given by

F(λ1, . . . , λr) = G(λ1, . . . , λr+1),

we thus have

E

(
∑

µ1 6=µ2 6=···6=µr+1∈E
F(µ1, . . . , µr)

)

=
1

Z′n

∫
Ur+1

ρr+1(λ1, . . . , λr+1)F(λ1, . . . , λr)dν(λ1) . . . dν(λr+1)

=
1

Z′n

∫
Ur

F(λ1, . . . , λr)dν(λ1) . . . dν(λr)
∫

U
ρr+1(λ1, . . . , λr+1)dν(λr+1).
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The terms of the sum do not depend on µr+1. But µr+1 is an eigenvalue of M which must be different
from µ1, . . . , µr, which leaves n− r possible choices. Consequently

(n− r)E

(
∑

µ1 6=µ2 6=···6=µr∈E
F(µ1, . . . , µr)

)

=
1

Z′n

∫
Ur

F(λ1, . . . , λr)dν(λ1) . . . dν(λr)
∫

U
ρr+1(λ1, . . . , λ)dν(λ),

and we conclude with a backwards induction.
�

The above proposition applies to a large class of point processes, but we shall not go in this direc-
tion. In this lecture we shall rather explore the fact that the correlation function ρn can be expressed as
a determinant. The following lemma will reveal helpful:

LEMMA 1.9. For all λ, λ′ ∈ U,

K0(λ, λ′) =
∫

U
K0(λ, λ′′)K0(λ

′′, λ′)dν(λ′′),

and ∫
U

K0(λ, λ)dν(λ) = n.

PROOF. The second identity is obvious for K0(λ, λ) = n for all λ ∈ U. For the first identity we note
that ∫

U
K0(λ, λ′′)K0(λ

′′, λ′)dν(λ′′) =
∫

U

(
n−1

∑
`=0

(λλ′′)`
)(

n−1

∑
`=0

(λ′′λ′)`
)

dν(λ′′)

= ∑
0≤`,`′≤n−1

λ
`
(λ′)`

′
∫

U
(λ′′)`(λ′′)`

′
dν(λ′′).

But ∫
U
(λ′′)`(λ′′)`

′
dν(λ′′) =

∫
U
(λ′′)`−`

′
dν(λ′′)

equals 1 if ` = `′ and 0 otherwise. We can then conclude that∫
U

K0(λ, λ′′)K0(λ
′′, λ′)dν(λ′′) = ∑

0≤`≤n−1
(λ)`(λ′)` = K0(λ, λ′).

�

We are now able to obtain a simple representation for the r-point correlation function:

PROPOSITION 1.10. For every r ∈ {1, . . . , n}, and every bounded and measurable function F from Ur to
R, we have:

E

(
∑

µ1 6=µ2 6=···6=µr∈E
F(µ1, . . . , µr)

)
=
∫

Ur
ρr(λ1, . . . , λr)F(λ1, . . . , λr)dν(λ1) . . . dν(λr),

where
ρr(λ1, . . . , λr) = det

(
(K0(λj, λk))1≤j,k≤r

)
.

PROOF. We prove the result with a backwards induction. We have already established the result
for r = n. We assume that the expression given by the proposition holds for r + 1, for 1 ≤ r ≤ n− 1.
Then from previous results we have

ρr(λ1, . . . , λr) =
1

n− r

∫
U

det
(
(K0(λj, λk))1≤j,k≤r+1

)
dν(λr+1).

We expand the determinant and isolate the factors involving λr+1 to obtain:

det
(
(K0(λj, λk))1≤j,k≤r+1

)
= ∑

σ∈Sr+1,σ(r+1)=r+1
ε(σ)K0(λr+1, λr+1) ∏

1≤j≤r
K0(λj, λσ(j))

+ ∑
1≤a,b≤r

∑
σ∈Sr+1,σ(a)=r+1,σ(r+1)=b

ε(σ)K0(λa, λr+1)K0(λr+1, λb) ∏
1≤j≤r,j 6=a

K0(λj, λσ(j)).
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Next we integrate w.r.to λr+1 using the previous lemma:

(n− r)ρr(λ1, . . . , λr) = n ∑
σ∈Sr

ε(σ) ∏
1≤j≤r

K0(λj, λσ(j))

+ ∑
1≤a,b≤r

∑
σ∈Sr+1,σ(a)=r+1,σ(r+1)=b

ε(σ)K0(λa, λb) ∏
1≤j≤r,j 6=a

K0(λj, λσ(j)).

Now we note that the permutations σ in Sr+1 such that σ(a) = r + 1 and σ(r + 1) = b are in one to one
correspondence with permutations σ′ in Sr satisfying σ′(a) = b: to see it, define σ′ from σ by setting
σ′(c) = σ(c) for all c ∈ {1, . . . , r} such that c 6= a. With this bijection, we get:

(n− r)ρr(λ1, . . . , λr) = n ∑
σ∈Sr

ε(σ) ∏
1≤j≤r

K0(λj, λσ(j))

+ ∑
1≤a,b≤r

∑
σ′∈Sr ,σ′(a)=b

ε(σ) ∏
1≤j≤r,

K0(λj, λσ′(j)).

Moreover if σ′′ is the element of Sr+1 which satisfies σ′′(c) = σ′(c) for c ≤ r and σ′′(r + 1) = r + 1, one
easily checks that σ = τr+1,b ◦ σ′′, where τr+1,b is the transposition exchanging r + 1 and b, and thus

ε(σ) = −ε(σ′′) = −ε(σ′).

Consequently

(n− r)ρr(λ1, . . . , λr) = n ∑
σ∈Sr

ε(σ) ∏
1≤j≤r

K0(λj, λσ(j))

− ∑
1≤a,b≤r

∑
σ′∈Sr ,σ′(a)=b

ε(σ′) ∏
1≤j≤r,

K0(λj, λσ′(j)),

that is

(n− r)ρr(λ1, . . . , λr) = n ∑
σ∈Sr

ε(σ) ∏
1≤j≤r

K0(λj, λσ(j))

− ∑
1≤a≤r

∑
σ′∈Sr

ε(σ′) ∏
1≤j≤r,

K0(λj, λσ′(j)),

The right hand side of the last equality is equal to

(n− r)det
(
(K0(λj, λk))1≤j,k≤r

)
,

which proves the result for r and hence by backwards induction the statement is always true. Now the
previous proposition states that

E

(
∑

µ1 6=µ2 6=···6=µr∈E
F(µ1, . . . , µr)

)
=

1
Z′n

∫
Ur

ρr(λ1, . . . , λr)F(λ1, . . . , λr)dν(λ1) . . . dν(λr),

and so it is enough to show that Z′n = 1.
For this we take r = 1 and F ≡ 1:

∑
µ1∈E

1 =
1

Z′n

∫
U

ρ1(λ)dν(λ),

where
∑

µ1∈E
1 = n

and ∫
U

ρ1(λ)dν(λ) =
∫

U
K0(λ, λ)dν(λ) = n,

from which we immediately deduce the desired result.
�

A random point process whose correlation functions are of the form above is called a determinantal
point process. Determinantal point processes play a very important role in random matrix theory and
mathematical physics. The function K0 is called the kernel of this determinantal point process. Note
that K0 is a complex valued function while the correlation functions ρr are real valued. We thus give an
alternative description:

22



THEOREM 1.11. For all r ∈ {1, . . . , n}, and for θ1, . . . , θr ∈ R, the correlation function ρr satisfies:

ρr(eiθ1 , . . . , eiθr ) = det((K(θj, θk))1≤j,k≤n),

where

K(θ, θ′) =
sin[n(θ′ − θ)/2]
sin[(θ′ − θ)/2]

,

for θ 6= θ′ modulo 2π, and
K(θ, θ′) = n

if θ = θ′ modulo 2π.

PROOF. The result is already proven if one replaces K(θj, θk) with K′(θj, θk), where

K′(θj, θk) = K0(eiθj , eiθk ) =
n−1

∑
`=0

ei`(θk−θj) =
einθ − 1
eiθ − 1

= eiθ(n−1)/2 einθ/2 − e−inθ/2

eiθ/2 − e−iθ/2 ,

if θ := θk − θj 6= 0 modulo 2π, and

K′(θj, θk) = n

if θ is a multiple of 2π. Consequently we have

K′(θj, θk) = e−iθj(n−1)/2eiθk(n−1)/2K(θj, θk).

It follows that (K′(θj, θk))1≤j,k≤n can be obtained from the matrix (K(θj, θk))1≤j,k≤n by multiplying the

j-th raw by e−iθj(n−1)/2 for all j, and the k-th column by eiθk(n−1)/2 for all k. One can then easily check
that both matrices have the same determinant.

�

We note that in order to compute ρr at r points of the unit circle using the previous proposition, we
need to consider the arguments of these points. These arguments are a priori only defined modulo 2π.
If n is odd, then K(θj, θk) does not depend on the choices made for θj and θk, since sin(nθ/2)/ sin(θ/2)
is 2π-periodic in θ. On the other hand if n is even, this last function is 4π-periodic, so that K(θj, θk) can
change sign, for instance if one adds 2π to θj. However this change of sign does not alter the value of
the determinant. For instance if n = 2, we have K(θ, θ) = 2,

K(θ, θ′) =
sin(θ′ − θ)

sin[(θ′ − θ)/2]
= 2 cos[(θ′ − θ)/2],

which changes sign if one adds 2π to θ or θ′. However a simple determinant computation yields

ρ2(eiθ , eiθ′) = 4(1− cos2[(θ′ − θ)/2]) = 4 sin2[(θ′ − θ)/2],

which only depends on eiθ and eiθ′ : we have

ρ2(λ, λ′) = |λ− λ′|2,

in agreement with Proposition 1.5.
More generally we can give the following general formula when r = 2:

COROLLARY 1.12. The 2-point correlation for CUE(n) is given by

ρ2(eiθ , eiθ′) = n2 − sin2[n(θ′ − θ)/2]
sin2[(θ′ − θ)/2]

,

whenever eiθ 6= eiθ′ .

A simple Taylor expansion yields, for n ≥ 2,

ρ2(eiθ , eiθ′) ∼ n2(n2 − 1)(θ′ − θ)2/12

when θ′ − θ tends to zero. We recover the fact the for CUE(n), the eigenvalues exhibit a repulsion
proportional to the square of their distance.
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1.2. The macroscopic behavior of the eigenvalues of CUE(n). We introduce the empirical distri-
bution of the eigenvalues; if λ1, . . . , λn are the eigenvalues, we define

µn =
1
n

n

∑
j=1

δλj ,

where δλj is the Dirac mass at λj. We would now like to prove that this measure converges to the
uniform measure on the unit circle. For this we consider its Fourier transform: for k ∈ Z,

µ̂n(k) =
∫

U
zkdµn(z) =

1
n

n

∑
j=1

λk
j =

1
n

Tr(Mk),

where M ∈ CUE(n). This shows that it is important to understand the behavior of traces of powers.
We state and prove a simple result which is enough for our purposes:

PROPOSITION 1.13. Let M ∈ CUE(n). For k = 0, Tr(Mk) = n, and for k 6= 0,

E[Tr(Mk)] = 0, E[|Tr(Mk)|2] = |k| ∧ n.

It is interesting to compare this result to the case of n points taken independently and uniformly on
the unit circle. If λ′1, . . . λ′n are chosen in this way, then

n

∑
j=1

(λ′j)
k = n

if k = 0, and

E

[
n

∑
j=1

(λ′j)
k

]
= 0, E

∣∣∣∣∣ n

∑
j=1

(λ′j)
k

∣∣∣∣∣
2
 = n

if k 6= 0.

PROOF. The case k = 0 is trivial so we shall focus on the case k 6= 0. Since the distribution of M and
λM is the same for every λ ∈ U, we have:

E[Tr(Mk)] = E[Tr((λM)k)] = λkE[Tr(Mk)],

hence
E[Tr(Mk)] = 0.

To compute the second moment we express the traces as functions of the eigenvalues to obtain:

E[|Tr(Mk)|2] = E

[
n + ∑

1≤p 6=q≤n
λk

pλk
q

]
= n +

∫
U2

(λλ′)kρ2(λ, λ′)dν(λ)dν(λ′),

where dν is the uniform measure on U. An application of Proposition 1.10 yields:

E[|Tr(Mk)|2] = n +
∫

U2
(λλ′)k (K0(λ, λ)K0(λ

′, λ′)− K0(λ, λ′)K0(λ
′, λ)

)
dν(λ)dν(λ′)

= n +
∫

U2
(λλ′)k

(
n2 − ∑

0≤`,`′≤n−1
(λλ′)`(λ′λ)`

′
)

dν(λ)dν(λ′)

= n + n2
∫

U2
(λλ′)kdν(λ)dν(λ′)− ∑

0≤`,`′≤n−1

∫
U2

(λλ′)k+`−`′dν(λ)dν(λ′).

In the last sum of the equality above, only indexes corresponding to ` and `′ such that k + `− `′ = 0
yield a non zero term (in which case the term is equal to 1). For |k| ≥ n there are no ` and `′ such that
k + `− `′ = 0. For 0 < k < n, the pairs of indexes satisfying this equality are (0, k), (1, k + 1), . . . , (n−
1− k, n− 1): there are n− k of them. For −n < k < 0, the pairs of indexes satisfying this equality are
(−k, 0), (1− k, 1), . . . , (n− 1, n− 1+ k): there are n + k of them. In all cases there thus (n− |k|)∨ 0 such
pairs, which yields

E[|Tr(Mk)|2] = n− [(n− |k|) ∨ 0] = |k| ∧ n.
�

We can now prove the following convergence result:
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PROPOSITION 1.14. Let (Mn)n≥1 be a sequence of random matrices, with M ∈ CUE(n). We note µn the
empirical distribution of the eigenvalues. Then almost surely µn converges in law, when n → ∞, to the uniform
measure on the unit circle.

PROOF. Let q > 0 be an integer. It follows from the previous proposition that for k 6= 0,

P (|µ̂n(k)| ≥ 1/q) ≤ q2E
[
|µ̂n(k)|2

]
=

q2

n2 E[|Tr(Mk)|2] = q2(|k| ∧ n)
n2 ≤ |k|q

2

n2 .

An application of the Borel Cantelli lemma yields that a.s. for k 6= 0 and for all q ≥ 1, |µ̂n(k)| < 1/q if n
is sufficiently large. In other words, a.s. for all k 6= 0,

µ̂n(k) −→n→∞
0 = ν̂(k),

where ν is the uniform measure on the unit circle. Moreover it is immediate that

µ̂n(0) = ν̂(0) = 1,

consequently µn converges a.s. in law to ν.
�

We observe from the above results that for k 6= 0, the L2 norm of the trace of Mk does not depend
on n, if n ≥ |k|. This means that this moment becomes constant and thus converges when n increases.
This is in fact a special case of a more general result due to Diaconis and Shahshahani ([9], [10]):

PROPOSITION 1.15 (Diaconis and Shahshahani). Let p ≥ 1, a1, . . . , ap, b1, . . . , bp ≥ 0 be integers and
let M ∈ CUE(n). We have:

E

[
p

∏
j=1

(
Tr(Mj)

)aj
(

Tr(Mj)
)bj

]
= 1∀j∈{1,...,p},aj=bj

p

∏
j=1

jaj(aj)!,

whenever

n ≥
p

∑
j=1

j(aj + bj).

We do not prove this result but rather give as a consequence a result on the convergence of traces
of powers.

COROLLARY 1.16. Let p > 0 be an integer and let M ∈ CUE(n). Then the following convergence in law
holds: (

Tr(Mk
n)
)

1≤k≤p
−→
n→∞

(Zk)1≤k≤p,

where (Zk)k≥1 are complex independent Gaussian random variables satisfying

E[Zk] = E[Z2
k ] = 0, E[|Zk|2] = k.

PROOF. It is equivalent to show the convergence of joint moments of
(

Tr(Mk
n)
)

1≤k≤p
. According

to the previous proposition each joint moment is constant for n sufficiently large. We thus need to show
that for integers a1, . . . , ap, b1, . . . , bp ≥ 0,

E

[
p

∏
j=1

Z
aj
j Zj

bj

]
= 1∀j∈{1,...,p},aj=bj

p

∏
j=1

jaj(aj)!.

Since the variables (Zj)j≥1 are independent, it is enough to show that

E[Z
aj
j Zj

bj ] = 1aj=bj
jaj(aj)!.

The case aj 6= bj follows from the rotation invariance property of the distributions of Zj. Moreover we
note that Zj is distributed like

√
jZ1, and thus for aj = bj, we have

E[|Zj|2aj ] = jaj E[|Z1|2aj ].

Next we note that Z1 = N1 + iN2, where N1 and N2 are two independent centred Gaussian random
variables with variance 1/2. Hence we have |Z1|2 = N 2

1 +N 2
2 and

E[|Z1|2aj ] =
∫ ∞

0
e−ttaj dt = (aj)!
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which completes the proof. �

We thus see that the traces of powers of CUE(n) random matrices converge in law without any
normalization. This is very different from the situation of n i.i.d. points uniformly chosen on the unit
circle where according to the central limit theorem one needs a

√
n normalization.

The Diaconis-Shahshahani result deals with the situation where the powers are fixed and the size of
the matrices goes to infinity. One may ask what happens when the size is fixed and the powers become
large. We already know from Proposition 1.13 that E[|Tr(Mk

n)|2] = n if |k| > n: this is the same second
moment obtained when one replaces the eigenvalues with n i.i.d. points uniformly distributed on the
unit circle. Remarkably this generalizes to:

PROPOSITION 1.17 (Rains). Let M ∈ CUE(n) and let k be such that |k| ≥ n. Then the eigenvalues of Mk
n

are distributed like n independent random variables uniformly distributed on the unit circle.

PROOF. Since the set of trigonometric polynomials is dense in the space of continuous functions
on U, it is enough to prove that for a symmetric function F from Un to C, which is polynomial in its
variables and its inverses, we have∫

Un
F(λk

1, . . . , λk
n)ρn(λ1, . . . , λn)dν(λ1) . . . dν(λn) = Kn

∫
Un

F(λk
1, . . . , λk

n)dν(λ1) . . . dν(λn),

Kn depending only on n, and ρn being the n-point correlation function for CUE(n). Now we use the
fact that there exists Cn > 0 such that

ρn(λ1, . . . , λn) = Cn ∏
1≤j<k≤n

|λj − λk|2 = Cn ∏
1≤j<k≤n

(λj − λk)(λ
−1
j − λ−1

k ) = R(λ1, . . . , λn),

where R is a polynomial function in λ1, . . . , λn, λ−1
1 , . . . , λ−1

n , symmetric in λ1, . . . , λn, and such that
the exponent of each of the variables λ1, . . . , λn is between −n + 1 and n − 1. Now if αλm1

1 . . . λmn
n ,

−n + 1 ≤ m1, . . . , mn ≤ n− 1 is one of the terms of R, the integral∫
Un

αλm1
1 . . . λmn

n F(λk
1, . . . , λk

n)dν(λ1) . . . dν(λn)

decomposes into a linear combination of integrals∫
Un

λ
m′1
1 . . . λ

m′n
n dν(λ1) . . . dν(λn)

where the exponents m′1, . . . , m′n are respectively congruent to m1, . . . , mn modulo k. This last integral is
non zero only in the case where m′1, . . . , m′n are zero, which means that m1, . . . , mn are multiple of k. But
since their absolute value is strictly smaller than n, this implies that m1, . . . , mn are all zero. Hence we
have: ∫

Un
F(λk

1, . . . , λk
n)ρn(λ1, . . . , λn)dν(λ1) . . . dν(λn)

=
∫

Un
F(λk

1, . . . , λk
n)R(λ1, . . . , λn)dν(λ1) . . . dν(λn)

=
∫

Un
KnF(λk

1, . . . , λk
n)dν(λ1) . . . dν(λn),

where Kn is the constant term of the polynomial R. This completes the proof.
�

1.3. The behavior of eigenvalues at the microscopic scale. We first make the observation that a
unitary matrix with simple eigenvalues has n eigenangles in any interval of length 2π, such as (−π, π].
The average spacing of these eigenangles is thus 2π/n. So if we wish to observe a non trivial behavior
of the eigenangles we need to properly normalize the spacing between eigenvalues by multiplying the
angles by a factor n/2π. This motivates our next proposition.

PROPOSITION 1.18. Let En be the set of random points, obtained by multiplying by n/2π all eigenangles
in (−π, π] of CUE(n) random matrices. Then for all r ∈ {1, . . . , n}, and for every measurable and bounded
function F from Rr to R, we have:

E

(
∑

x1 6=···6=xr∈En

F(x1, . . . , xr)

)
=
∫
(−n/2,n/2]r

F(y1, . . . , yr)ρ
(n)
r (y1, . . . , yr)dy1 . . . dyr,
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where
ρ
(n)
r (y1, . . . , yr) = det((K(n)(yj, yk))1≤j,k≤r),

with

K(n)(y, y′) =
sin[π(y′ − y)]

n sin[π(y′ − y)/n]

for y′ 6= y and

K(n)(y, y) = 1.

PROOF. Define G from Ur to R as

G(λ1, . . . , λr) = F(x1, . . . , xr),

where for all j ∈ {1, . . . , r},
xj = nηj/2π,

ηj ∈ (−π, π] being the argument of λj. We have

E

(
∑

x1 6=···6=xr∈En

F(x1, . . . , xr)

)
= E

(
∑

λ1 6=···6=λr∈E
G(λ1, . . . , λr)

)
,

where E is the set of the eigenvalues of the considered CUE(n) matrix. Using previous notation we can
write:

E

(
∑

x1 6=···6=xr∈En

F(x1, . . . , xr)

)
=
∫

Ur
G(λ1, . . . , λr) det((K(θj, θk))1≤j,k≤r)dν(λ1) . . . dν(λn),

where θj ∈ (−π, π] is the argument of λj. Now we write the integral w.r. to θ1, . . . θn to obtain

E

(
∑

x1 6=···6=xr∈En

F(x1, . . . , xr)

)
=
∫
(−π,π]r

G(eiθ1 , . . . , eiθr )det((K(θj, θk))1≤j,k≤r)
dθ1

2π
. . .

dθr

2π
.

Now we make the change of variables yj = nθj/2π and get

E

(
∑

x1 6=···6=xr∈En

F(x1, . . . , xr)

)

=
∫
(−n/2,n/2]r

G(e2iπy1/n, . . . , e2iπyr/n)det((K(2πyj/n, 2πyk/n))1≤j,k≤r)
dy1

n
. . .

dyr

n
,

that is

E

(
∑

x1 6=···6=xr∈En

F(x1, . . . , xr)

)

=
∫
(−n/2,n/2]r

F(y1, . . . , yr)det

[(
1
n

K(2πyj/n, 2πyk/n)
)

1≤j,k≤r

]
dy1 . . . dyr.

Next we note that for y 6= y′ in (−n/2, n/2], we have

K(2πy/n, 2πy′/n) =
sin[π(y′ − y)]

sin[π(y′ − y)/n]
,

and
K(2πy/n, 2πy/n) = n,

which implies
1
n

K(2πy/n, 2πy′/n) = K(n)(y, y′).

�

The set of random points En is also a determinantal point process with kernel K(n). The following
celebrated convergence result is due to Dyson:
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THEOREM 1.19 (Dyson). For y, y′ ∈ R, we have:

K(n)(y, y′) −→
n→∞

K(∞)(y, y′),

where

K(∞)(y, y′) =
sin[π(y′ − y)]

π(y′ − y)
for y 6= y′ and

K(∞)(y, y) = 1.

The kernel K(∞) which involves the function x 7→ (sin x)/x: is called the sine kernel. The conver-
gence of K(n) towards K(∞) hints at some convergence of the point process En to a determinantal point
process with kernel K(∞). We now give a rigorous framework for this result. To this end we shall need
the following lemma:

LEMMA 1.20. For 1 ≤ r ≤ n and for all y1, . . . , yr ∈ (−n/2, n/2], we have

0 ≤ ρ
(n)
r (y1, . . . , yr) ≤ 1.

PROOF. A straightforward computation for geometric sums shows that for y, y′ ∈ (−n/2, n/2],

K(n)(y, y′) =
1
n ∑

j∈An

eijπ(y′−y)/n,

where An is the set of integers between−n et n, with a different parity than n. Hence K(n)(y, y′) is equal
to the usual Hermitian scalar product between the vectors vy et vy′ of CAn , where

vy :=
(

1√
n

eijy/n
)

j∈An

.

Hence ρ
(n)
r (y1, . . . , yr) is the Gram determinant of the vectors vy1 , . . . , vyr , which implies

0 ≤ ρ
(n)
r (y1, . . . , yr) ≤ ||vy1 ||

2 . . . ||vyr ||2.

Since An has n elements and that all the coordinates of vyj have modulus 1/
√

n, these vectors have
norm 1, and the result of the lemma follows.

�

We now state and prove the main convergence result.

THEOREM 1.21. Let En denote the set of eigenvalues taken in (−π, π] and multiplied by n/2π of a random
unitary matrix of size n following the Haar measure. Let us also define for y 6= y

′

K(∞)(y, y
′
) =

sin[π(y
′ − y)]

π(y′ − y)

and
K(∞)(y, y) = 1.

Then there exists a point process E∞ such that for all r ∈ {1, . . . , n}, and for all Borel measurable and bounded
functions F with compact support from Rr to R, we have, as n→ ∞,

E

(
∑

x1 6=···6=xr∈En

F(x1, . . . , xr)

)
→
∫

Rr
F(y1, . . . , yr)ρ

(∞)
r (y1, . . . , yr)dy1 . . . dyr,

where
ρ
(∞)
r (y1, . . . , yr) = det((K(∞)(yj, yk))1≤j,k≤r).

Moreover the point process En converges to E∞ in the following sense: for all Borel measurable bounded functions
f with compact support from R to R,

∑
x∈En

f (x) −→
n→∞ ∑

x∈E∞

f (x),

where the convergence above holds in law.
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PROOF. In the course of the proof we shall use the above lemma which states that for 1 ≤ r ≤ n,
and for all y1, . . . , yr ∈ (−n/2, n/2], we have

0 ≤ ρ
(n)
r (y1, . . . , yr) ≤ 1,

and that the correlation functions of a Poisson point process with intensity 1 are all equal to 1 (and hence
are the correlation functions ρ

(n)
r are dominated by those of a Poisson point process with intensity 1).

We first note the following identity: for any integer p ≥ 0,(
∑

x∈En

f (x)

)p

=
up

∑
m=1

∑
x1 6=x2 6=···6=xrp,m∈En

G f ,p,m(x1, . . . , xrp,m),

where up depends only on p, rp,m on p and m ≤ up, and G f ,p,m being a measurable, bounded function
with compact support from Rrp,m to R, and depending only on f , p and m. For instance(

∑
x∈En

f (x)

)3

= ∑
x1∈En

( f (x1))
3 + 3 ∑

x1 6=x2∈En

( f (x1))
2 f (x2) + ∑

x1 6=x2 6=x3∈En

f (x1) f (x2) f (x3),

with
u3 = 3, r3,1 = 1, r3,2 = 2, r3,3 = 3,

G f ,3,1(x1) = ( f (x1))
3,

G f ,3,2(x1, x2) = 3( f (x1))
2 f (x2),

G f ,3,3(x1, x2, x3) = f (x1) f (x2) f (x3).
We can hence write

E

[(
∑

x∈En

f (x)

)p]
=

up

∑
m=1

∫
(−n/2,n/2]rp,m

G f ,p,m(y1, . . . , yrp,m)ρ
(n)
rp,m(y1, . . . , yrp,m) dy1 . . . dyrp,m ,

provided the above expression converges absolutely, which we now check. Since G f ,p,m is measurable,
bounded with compact support, we can find A f ,p,m > 0 such that

|G f ,p,m(y1, . . . , yrp,m)| ≤ A f ,p,m1|y1|,...,|yrp,m |≤A f ,p,m

for y1, . . . , yrp,m ∈ R. Moreover from the remark above on the correlation functions, we have

|ρ(n)rp,m(y1, . . . , yrp,m)|1y1,...,yrp,m∈(−n/2,n/2] ≤ 1.

Consequently the expression we are dealing with can be bounded from above by
up

∑
m=1

∫
[−A f ,p,m ,A f ,p,m ]rp,m

A f ,p,m ≤
up

∑
m=1

(2A f ,p,m)
rp,m+1,

which is finite. Moreover our upper bound is independent of n. Now since the kernel K(n) converges
pointwise to K(∞), we also have

ρ
(n)
rp,m(y1, . . . , yrp,m)1y1,...,yrp,m∈(−n/2,n/2] −→n→∞

ρ
(∞)
rp,m(y1, . . . , yrp,m),

and we can apply the dominated convergence theorem to obtain

E[(X(n)
f )p] −→

n→∞
M(∞)

f ,p

where
X(n)

f = ∑
x∈En

f (x)

and

M(∞)
f ,p =

up

∑
m=1

∫
Rrp,m

G f ,p,m(y1, . . . , yrp,m)ρ
(∞)
rp,m(y1, . . . , yrp,m) dy1 . . . dyrp,m .

We also note that

E[|X(n)
f |

p] ≤ E[(X(n)
| f | )

p] ≤ E

[(
∑

x∈N
| f (x)|

)p]
,
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where N is a Poisson point process defined on R with intensity 1 (the last inequality follows from the
fact that the correlation functions of En are smaller or equal than 1, and hence smaller or equal than the
correlation functions of N).

Now for every λ ∈ R, each term of the series

∑
p≥0

(iλ)p

p!
E[(X(n)

f )p]

is uniformly dominated in absolute value and independently of n, by the corresponding term in the
series

∑
p≥0

|λ|p
p!

E

[(
∑

x∈N
| f (x)|

)p]
= E

[
exp

(
|λ| ∑

x∈N
| f (x)|

)]
.

If we choose A f > 0 in such a way that | f | ≤ A f and such that the support of f is contained in
[−A f , A f ], we have

E

[
exp

(
|λ| ∑

x∈N
| f (x)|

)]
≤ E

[
exp

(
|λ|A f Card(N ∩ [−A f , A f ])

)]
= E[e

|λ|A f Y2A f ],

Y2A f standing for a Poisson random variable with parameter 2A f . The latter is finite and we can thus
apply the dominated convergence theorem to obtain

E

[
eiλX(n)

f

]
−→
n→∞ ∑

p≥0

(iλ)p

p!
M(∞)

f ,p ,

the last series in display being absolutely convergent and bounded from above by∣∣∣∣∣1− ∑
p≥0

(iλ)p

p!
M(∞)

f ,p

∣∣∣∣∣ ≤ ∑
p≥1

|λ|p
p!

M(∞)
| f |,p ≤ ∑

p≥1

|λ|p
p!

sup
n≥1

E[|X(n)
f |

p]

≤ ∑
p≥1

|λ|p
p!

E

[(
∑

x∈N
| f (x)|

)p]
= E

[
exp

(
|λ| ∑

x∈N
| f (x)|

)]
− 1

≤ E[e
|λ|A f Y2A f ]− 1 = e2A f (e

|λ|A f −1) − 1.

Consider now a finite number f1, f2, . . . , fq of measurable and bounded functions with compact support,
and let A > 0 be such that | f j| ≤ A1[−A,A] for j ∈ {1, . . . , q}, and take λ, λ1, . . . , λq ∈ R. It follows from

the definition of X(n)
f that

q

∑
j=1

λjX
(n)
f j

= X(n)
g

where

g :=
q

∑
j=1

λj f j,

which implies that

E

[
e

iλ ∑
q
j=1 λjX

(n)
f j

]
−→
n→∞ ∑

p≥0

(iλ)p

p!
M(∞)

g,p .

Now since g is bounded by A ∑
q
j=1 |λj| and since the support of g is included in [−A, A], we have

∣∣∣∣∣1− ∑
p≥0

(iλ)p

p!
M(∞)

g,p

∣∣∣∣∣ ≤ e
2A(1+∑

q
j=1 |λj |)

(
e
|λ|A(1+∑

q
j=1 |λj |)−1

)
− 1.

If ν1, . . . , νq are real numbers not all equal to zero, we set

λ =
q

∑
j=1
|νj|, λj = νj/λ,
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which implies ∑
q
j=1 |λj| = 1, and

E

[
e

i ∑
q
j=1 νjX

(n)
f j

]
−→
n→∞

Q( f1, . . . , fq, ν1, . . . , νq)

where

|Q( f1, . . . , fq, ν1, . . . , νq)− 1| ≤ e4A(e2|λ|A−1) − 1.

For fixed f1, . . . , fq, the quantity Q( f1, . . . , fq, ν1, . . . , νq) hence tends to 1 when (ν1, . . . , νq) tends to zero.

It follows from Lévy’s convergence theorem that the vector (X(n)
f1

, . . . , X(n)
fq

) converges in law, when n
goes to infinity, to a random variable with values in Rq with characteristic function given by

(ν1, . . . , νq) 7→ Q( f1, . . . , fq, ν1, . . . , νq).

Consequently we have shown that there exists a family of random variables (X(∞)
f ) f∈A indexed by the

set A of bounded and measurable functions with compact support from R to R, satisfying

(X(n)
f ) f∈A −→n→∞

(X(∞)
f ) f∈A,

in the sense of finite dimensional distributions. Now for x ≥ 0, define

X(n)(x) = X(n)
1[0,x]

, X(∞)(x) = X(∞)
1[0,x]

,

and for x < 0,

X(n)(x) = −X(n)
1(x,0)

, X(∞)(x) = −X(∞)
1(x,0)

.

Note that for y ≥ x, X(n)(y) − X(n)(x) represents the number of points of En in the interval (x, y].
Moreover we saw that (X(n)(x))x∈Q converges in law (in the sense of finite dimensional distributions)
to (X(∞)(x))x∈Q. It follows from Skorokhod’s representation theorem that there exist random vari-
ables (Y(n)(x))x∈Q and (Y(∞)(x))x∈Q, with respectively the same distributions as (X(n)(x))x∈Q and
(X(∞)(x))x∈Q, such that almost surely, Y(n)(x) converges to Y(∞)(x) for all x ∈ Q. By construc-
tion (Y(n)(x))x∈Q is almost surely integer valued and increasing as a function of x: the same thing
holds for (Y(∞)(x))x∈Q. Moreover by taking the limits from the right, we can extend (Y(n)(x))x∈Q et
(Y(∞)(x))x∈Q to càdlàg functions defined on R. It is clear that (Y(n)(x))x∈R has then the same law as
(X(n)(x))x∈R, because (X(n)(x))x∈R is also càdlàg, with the same law when restricted to Q. We can
thus conclude that like for (X(n)(x))x∈R, (Y(n)(x))x∈R is also the distribution function of some σ-finite
measure Mn, with the same law as the sum of the Dirac measures taken at the points of En. Almost
surely, for x ∈ Q, (Y(n)(x)) converges to (Y(∞)(x)): hence this convergences also holds at all conti-
nuity points of (Y(∞)(x)). ConsequentlyMn converges weakly, in the sense of convergence in law on
compact subsets, to a limiting random measureM∞, with distribution function Y(∞). On can thus write

Mn = ∑
k∈Z

δ
t(n)k

, M∞ = ∑
k∈Z

δ
t(∞)
k

,

where {t(n)k , k ∈ Z} is a set of points with the same distribution as En. The weak convergence ofMn to
M∞ implies that for r ≥ 0, F continuous with compact support from Rr to R,

∑
k1 6=k2 6=···6=kr

F(t(n)k1
, . . . , t(n)kr

) −→
n→∞ ∑

k1 6=k2 6=···6=kr

F(t(∞)
k1

, . . . t(∞)
kr

).

Indeed the left hand side can be written as:

ur

∑
m=1

∫
Rsr,m

HF,r,m(y1, . . . , ysr,m)dMn(y1) . . . dMn(ysr,m),
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where ur depends only on r, sr,m on r and on m and HF,r,m depends on F, r, m, and the right hand side
can be written in similar way withMn replaced withM∞. For instance

∑
k1 6=k2 6=k3

F(t(n)k1
, . . . , t(n)k3

) =
∫

R3
F(y1, y2, y3)dMn(y1)dMn(y2)dMn(y3)

−
∫

R2
[F(y1, y2, y2) + F(y2, y1, y2) + F(y1, y2, y2)]dMn(y1)dMn(y2)

+ 2
∫

R
F(y1, y1, y1)dMn(y1).

If we assume that F is positive, it follows from Fatou’s lemma that

E

[
∑

k1 6=k2 6=···6=kr

F(t(∞)
k1

, . . . t(∞)
kr

)

]
≤ lim inf

n→∞
E

[
∑

k1 6=k2 6=···6=kr

F(t(n)k1
, . . . t(n)kr

)

]

= lim inf
n→∞

∫
Rr

F(y1, . . . , yr)ρ
(n)
r (y1, . . . , yr)dy1 . . . dyr

=
∫

Rr
F(y1, . . . , yr)ρ

(∞)
r (y1, . . . , yr)dy1 . . . dyr.

Reproducing the same computations as in the beginning of our proof yields, for f continuous and
positive with compact support, and p a positive integer:

N(∞)
f ,p := E

[(
∑

k∈Z

f (t(∞)
k )

)p]
≤ M(∞)

f ,p .

The bounds that we previously obtained for M(∞)
f ,p , and which obviously apply to N(∞)

f ,p as well, allow
us to deduce that for all λ ∈ R,

E

[
exp

(
iλ ∑

k∈Z

f (t(∞)
k )

)]
= ∑

p≥0

(iλ)p

p!
N(∞)

f ,p .

Moreover an application of the dominated convergence theorem yields

E

[
exp

(
iλ ∑

k∈Z

f (t(∞)
k )

)]
= lim

n→∞
E

[
exp

(
iλ ∑

k∈Z

f (t(n)k )

)]

= lim
n→∞

E

[
eiλX(n)

f

]
= ∑

p≥0

(iλ)p

p!
M(∞)

f ,p .

We can hence conclude that the coefficients of both series in λ are equal, i.e. M(∞)
f ,p = N(∞)

f ,p . Going back
to the expression of the expansion of the moment of order p that we gave earlier in the proof, we see
that the equality can hold only if

E

[
∑

k1 6=k2 6=···6=kr

F(t(∞)
k1

, . . . t(∞)
kr

)

]
=
∫

Rr
F(y1, . . . , yr)ρ

(∞)
r (y1, . . . , yr)dy1 . . . dyr,

for all F, r such that r = rp,m, F = G f ,p,m, with 1 ≤ m ≤ up. Indeed the left hand side is always smaller
or equal than the right hand side, and if one of the inequalities were a strict inequality, we would obtain
by summing up all terms that N(∞)

f ,p < M(∞)
f ,p . The only term for which rp,m = p gives

E

 ∑
k1 6=k2 6=···6=kp

F(t(∞)
k1

, . . . t(∞)
kp

)

 =
∫

Rp
F(y1, . . . , yp)ρ

(∞)
p (y1, . . . , yp)dy1 . . . dyp,

where
F(y1, . . . , yp) = f (y1) . . . f (yp).

This then extends to all functions F which are measurable, positive and continuous with compact sup-
port: indeed there always exists an f which is continuous with compact support on R such that F ≤ G,
with

G(y1, . . . , yp) = f (y1) . . . f (yp).
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Since we have inequalities for both functions F et G− F and an equality for their sum G, we in fact have
an equality everywhere.

We see that with a monotone class argument the previous equality then extends to functions F
which are measurable, bounded and with compact support. This shows the existence of a point process
E∞ with the same correlation functions as those given in the statement of the Proposition, provided we
do not exclude a priori point processes with multiple points. More precisely we take for E∞ the set of
points t(∞)

k of the support of the measureM∞, taken with their multiplicities. Going back to our earlier
computations, we see that for functions f which are measurable, bounded with compact support from
R to R, and taking into account multiplicities, we have:

E

[(
∑

x∈E∞

f (x)

)p]
= M(∞)

f ,p

and

E

[
exp

(
iλ ∑

x∈E∞

f (x)

)]
= ∑

p≥0

(iλ)p

p!
M(∞)

f ,p .

Consequently

E

[
eiλX(n)

f

]
−→
n→∞

E

[
exp

(
iλ ∑

x∈E∞

f (x)

)]
,

which corresponds to the convergence in law stated in the Proposition.
It only remains to show that E∞ does not have multiple points. Indeed, if E∞ is the set of points

(t(∞)
k )k∈Z, taken with multiplicities, then for any mesurable bounded function F with compact support

from R2 in R,

E

(
∑

k1 6=k2

F(t(∞)
k1

, t(∞)
k2

)

)
=
∫

R2
F(y1, y2)ρ

(∞)
2 (y1, y2)dy1dy2.

Taking F(y1, y2) = 1y1=y2 above yields

E
[
Card

{
(k1, k2) ∈ Z2, k1 6= k2, t(∞)

k1
= t(∞)

k2

}]
= 0,

which shows that E∞ does almost surely not have multiple points.
�

The point process E∞ is called the sine kernel determinantal point process. It appears in many
contexts in random matrix theory (e.g. universality results).

PROPOSITION 1.22. The formula given in the previous proposition uniquely characterizes the distribution
of E∞. This distribution is invariant under translation: for all y ∈ R, the image of E∞ under a translation by
y has the same distribution as E∞. The expected number of points of E∞ in an interval [a, b] is b − a, and its
variance can be bounded by log(b− a) if b− a ≥ 2.

In comparison, a Poisson point process with intensity 1 has variance b− a. The 2-point correlation
function ρ2(x, y) of E∞ is equivalent to π2(y − x)2/3 when y − x goes to zero, which shows that the
points of E∞ tend to repel each other on small scales.

PROOF. Going through the beginning of the proof of the previous proposition, one checks that the
formula giving the correlation functions actually characterizes the finite dimensional distributions of

∑
x∈E∞

f (x),

for f measurable, bounded and with compact support. In particular this gives the finite dimensional
distributions of the càdlàg process

y 7→ ∑
x∈E∞

1y≥0,x∈[0,y] − ∑
x∈E∞

1y<0,x∈(y,0),

and hence the distribution of the stochastic process itself in the space of càdlàg functions from R to
R. Consequently the distribution of E∞ is characterized for the points in E∞ are the time at which the
process jumps.
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Now the translation invariance of the law of E∞ is an immediate consequence of the fact that the
correlation functions characterize the law of E∞ and that for all r ≥ 1, y, y1, . . . , yr ∈ R,

ρ
(∞)
r (y1 + y, . . . , yr + y) = ρ

(∞)
r (y1, . . . , yr),

which itself follows from:
K(∞)(y1 + y, y2 + y) = K(∞)(y1, y2).

The computation for the expected number of points Na,b of E∞ ∩ [a, b] is a straightforward consequence
of ρ1 ≡ 1. To estimate the variance, we write

E[(Na,b)
2] = E

[
Na,b + ∑

x1 6=x2∈E∞

1x1,x2∈[a,b]

]
= (b− a) +

∫
[a,b]2

ρ2(y1, y2)dy1dy2,

and hence

Var[Na,b] = (b− a)− (b− a)2 +
∫
[a,b]2

ρ2(y1, y2)dy1dy2

= (b− a)−
∫
[a,b]2

[K(∞)(y1, y2)]
2dy1dy2.

But for all y ∈ R, we have

K(∞)(0, y) =
sin(πy)

πy
=
∫ 1/2

−1/2
e2iπytdt,

that is y 7→ K(∞)(0, y) is the Fourier transform of the indicator function of the interval [−1/2, 1/2]. An
application of Plancherel’s formula and the translation invariance of K(0) implies that for all y1 ∈ R,∫

R
[K(∞)(y1, y2)]dy2 = 1,

and hence ∫
[a,b]×R

[K(∞)(y1, y2)]
2dy1dy2 = (b− a).

Consequently we can write

Var[Na,b] =
∫
[a,b]×(R\[a,b])

[K(∞)(y1, y2)]
2dy1dy2,

and by symmetry,

Var[Na,b] = 2
∫ b

a

∫ ∞

b
[K(∞)(y1, y2)]

2dy1dy2.

Now we know
[K(∞)(y1, y2)]

2 ≤
(

1∧ [1/(y2 − y1)
2]
)

,

hence

Var[Na,b] ≤ 2
∫ b

a

∫ ∞

b

dy1dy2

1∨ (y2 − y1)2 .

For y1 ≤ b− 1, we have ∫ ∞

b

dy2

1∨ (y2 − y1)2 =
∫ ∞

b

dy2

(y2 − y1)2 =
1

b− y1

and for b− 1 ≤ y1 ≤ b, ∫ ∞

b

dy2

1∨ (y2 − y1)2 = 2 + y1 − b ≤ 2.

Finally

Var[Na,b] ≤ 4
∫ b

a

dy1

1∨ (b− y1)
= O(log(b− a)),

if b− a ≥ 2.
�

EXAMPLE 1.23 (Exercise). Let M ∈ CUE(n) and note θ̃j =
n

2π θj. For suitable test functions, prove that

1
n

E

[
∑
j 6=k

f (θ̃j − θ̃k)

]
→

N→∞

∫ ∞

−∞
f (v)

[
1−

(
sin(πv)

πv

)2
]

dv.
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2. Virtual Isometries

In this section we shall freely use well known results from uniformly distributed vectors on spheres
and distributional properties of elements of random unitary matrices (all the facts we shall need are
explained in detail in Appendix 2 and Appendix 3).

2.1. How to generate the Haar measure. Now we wish to address the question of generating Haar
distributed unitary matrices recursively. We build our intuition on the special case of uniformly dis-
tributed random permutations. A permutation is a bijection σ ∈ Sn of {1, · · · , n}

σ =

(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
with #S = n!. The Haar (or uniform) measure is defined as

µ(σ) =
1
n!

.

A transposition τij is an element of Sn such that

τ(j) = i, τ(k) = k, for k /∈ {i, j}.

LEMMA 2.1. Let σ ∈ Sn. There exists a unique decomposition of σ of the following form

σ = τn,mn ◦ τn−1,mn−1 ◦ · · · ◦ τ1,m1

where τh,mh
is the transposition which commutes h and mh with mh ∈ {1, · · · , h}.

PROOF. A simple induction. �

LEMMA 2.2. For k ∈ {1, · · · , n}, let τk,mk
be randomly and independently chosen according to P[mk =

j] = 1/k, for j ∈ {1, · · · , k}. Then σ = τn,mn ◦ τn−1,mn−1 ◦ · · · ◦ τ1,m1 is uniformly distributed.

It follows from a simple application of the definition of the Haar measure that if a matrix M ∈
CUE(n), then its first column is uniformly distributed on the unit sphere S n

C of Cn (see Appendix 2 and
Appendix 3 for background on uniformly distributed vectors on spheres and distribution of elements
of a random unitary matrix).

PROPOSITION 2.3. Let M ∈ U(N + 1) be such that its first column M1 is uniformly distributed on S N+1
C

.
If VN ∈ U(N) is chosen independently of M according to the Haar measure µU(N), then the matrix

VN+1 := M
(

1 0
0 VN

)
is distributed with the Haar measure µU(N+1).

PROOF. Due to the uniqueness property of the Haar measure, we only need to show that for a fixed
U ∈ U(N + 1)

UM
(

1 0
0 VN

)
law
= M

(
1 0
0 VN

)
.

In the following, a matrix A will often be written (A1‖Ã), where A1 is its first column. As U ∈
U(N + 1), (UM)1 = UM1 is distributed uniformly on the complex unit sphere S N+1

C
, so we can write

UM = (P1‖P̃), with P1 uniformly distributed on S N+1
C

and P̃ having a distribution on the orthogonal
hyperplane of P1. We then need to show that

(P1‖P̃)
(

1 0
0 VN

)
law
= (M1‖M̃)

(
1 0
0 VN

)
,

where all matrices are still independent. As M1 and P1 are identically distributed, by conditioning on
M1 = P1 = v (here v is any fixed element of S N+1

C
) it is sufficient to show that

(v‖P′)
(

1 0
0 VN

)
law
= (v‖M′)

(
1 0
0 VN

)
,

where M′ (resp P′) is distributed like M̃ (resp P̃) conditionally to M1 = v (resp P1 = v). Let A be any
element of U(N + 1) such that A(v) = (1, 0, . . . , 0). Since A is invertible, we just need to show that

A(v‖P′)
(

1 0
0 VN

)
law
= A(v‖M′)

(
1 0
0 VN

)
,
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that is to say

P′′VN
law
= M′′VN ,

where P′′ and M′′ are distributed on U(N) independently of VN . By independence and conditioning on

P′′ (resp M′′), we get P′′VN
law
= VN (resp M′′VN

law
= VN) by definition of the Haar measure µU(N). This

gives the desired result.
�

Now we need to make a natural choice for the transformation M: we need a simple unitary trans-
formation which maps the first vector of the basis to a uniformly distributed vector on the complex unit
sphere. This is the topic of next section.

2.2. Reflections over R. We will begin by briefly recalling the definition of reflections over R since
this is the one which is used if one wants to carry our construction to the orthogonal group. We also
wish to state them here in order to understand why real reflections or Householder transformations
would not be suitable if the ground field is the field of complex numbers.

DEFINITION 2.4. Let H denote a real vector space of dimension n. A reflection of H (sometimes called
a Householder transformation or an elementary reflector) is defined as an orthogonal transformation of H
which fixes each element of a hyperplane (i.e. linear subspace of codimension 1).

Let r be a reflection. Let us assume that r 6= 1 so that ker(1− r) = K is a hyperplane and dim im(1−
r) = 1.

Since r ∈ O(R) we must have det r ∈ {±1}. Clearly 1 is an eigenvalue with multiplicity n− 1. Let
λ 6= 1 denote the other eigenvalue. As det r is the product of the eigenvalues we conclude λ = −1 and
det r = −1. Consequently there exists a vector a ∈ H such that r(a) = −a and note that r is a map of
order 2 (namely r2 = 1). We will write ra for the reflection which maps a 7→ −a.

It is easy to find a formula for ra: First note that Ra⊕ (Ra)⊥ = H. There exists φ ∈ H∗ (where H∗ is
the space of linear forms on H) such that x− ra(x) = φ(x)a for every x ∈ H and ker φ = ker(1− ra) = K.
Since ker(〈·, a〉) = K, there exists a non-zero λ ∈ C∗ such that φ = λ〈·, a〉. Therefore x − ra(x) =
λ〈x, a〉a. Now ra(a) = −a so we have λ = 2

〈a,a〉 , hence

(9) ra(x) = x− 2
〈x, a〉
〈a, a〉 a.

This is the equation of a real orthogonal reflection that sends a to −a and hence a householder transfor-
mation is parametrized by a vector a.

Finally, we note that if m, e ∈ H are two distinct vectors with ‖m‖ = ‖e‖ = 1, there exists a unique
reflection which maps m on e, namely rm−e. But it is easy to see that given two vectors of norm 1 in
a complex Hilbert space, then there does not necessarily exist a Householder transformation (9) which
maps one on the other. Hence we need to introduce another type of reflection.

2.3. Reflections over C. Over the complex numbers the theory is different since the reflections we
consider are not necessarily of finite order and they are parametrized by one vector and a phase (that
is, a complex number of modulus 1).

We now assume we are given a Hilbert space H with dim H = n. For u, v ∈ H, we use the standard
inner product

〈u, v〉 :=
n

∑
k=1

ukvk.

If F ⊆ H, F a subset of H, we write F⊥ := {x ∈ H | 〈u, x〉 = 0 for all u ∈ F}.
If F and G are subspaces of H, we write H = F⊕⊥ G to indicate H = F+G = {x+ y | x ∈ F, y ∈ G}

and 〈x, y〉 = 0 for all x ∈ F and y ∈ G. It is then easy to check that F = G⊥ and (G⊥)⊥ = G and
dim G + dim G⊥ = dim H = n.

Let U(H) denote the set of unitary operators, i.e. linear bijections u : H → H which preserve the
inner product: 〈ux, uy〉 = 〈x, y〉 for every x, y ∈ H. Let 1 denote the identity map. We first recall the
elementary and well known result:

LEMMA 2.5. If u ∈ U(H) then im(1− u) = ker(1− u)⊥.
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DEFINITION 2.6. Let u denote a linear transform of a complex vector space H of finite dimension. We call u
a complex reflection if it is the identity or if it is unitary and rank(1− u) = 1. We will just write reflection if
the base field is clear.

REMARK 2.7. Usually in the literature, a linear transformation g ∈ GL(H) is a reflection if the order of g
is finite and rank(1− u) = 1. For our applications we do not require that g have finite order.

As in the real case, we can compute a formula for a general complex reflection.

PROPOSITION 2.8. Suppose that r is a reflection of the space H and that the vector a ∈ H spans im(1− r).
Then there exists α ∈ U such that for every x ∈ H,

r(x) = x− (1− α)
〈x, a〉
〈a, a〉 a.

PROOF. We have by construction and Lemma 2.5 the equivalences im(1− u) = Ca and ker(1−
u) = (Ca)⊥. Let φ ∈ H∗ denote the linear form defined by u(x) = x− φ(x)a. Clearly φ(x) = 0 if and
only if (1− u)x = 0, so ker φ = ker(1− u). But the linear form 〈·, a〉 also vanishes on ker(1− u) =
(Ca)⊥, so we must have some λ ∈ C∗ such that φ = λ〈·, a〉. Hence u(x) = x− λ〈x, a〉a.

To determine λ, we note that u(a) = αa for some α ∈ C, |α| = 1, so we must have λ = 1−α
〈a,a〉 as

required. �

DEFINITION 2.9. For non-zero a ∈ H and α ∈ C, |α| = 1, we define the reflection ra,α(x) by

ra,α(x) = x− (1− α)
〈x, a〉
〈a, a〉 a.

Note that ra,α has eigenvalue 1 with multiplicity n − 1 and eigenvalue α with multiplicity 1. The
following facts are easy to check and we omit the proofs.

PROPOSITION 2.10. For any non-zero a ∈ H and α, β ∈ U we have the following.
(1) ra,αra,β = ra,αβ.
(2) For every g ∈ U(H), gra,αg∗ = rga,α.
(3) For every non-zero λ ∈ C, rλa,α = ra,α.
(4) r−1

a,α = ra,α.

PROPOSITION 2.11. Let a, b ∈ H be non-zero vectors and α, β ∈ U. Then the reflections ra,α and rb,β
commute if and only if Ca = Cb or 〈a, b〉 = 0.

PROOF. This follows immediately by writing

ra,αrb,β(x) = x− (1− α)
〈x, a〉
〈a, a〉 a− (1− β)

〈x, b〉
〈b, b〉 + (1− α)(1− β)

〈b, a〉〈x, b〉
〈a, a〉〈b, b〉 a

which shows that the reflections commute if and only if

〈b, a〉〈x, b〉a = 〈a, b〉〈x, a〉b. �

Now we note that given two distinct vectors e, m ∈ H of unit length, there exists a unique complex
reflection r such that r(e) = m, which is rm−e,α where α = − 1−〈m,e〉

1−〈m,e〉
. Such r is given by the equation

r(x) = x− 〈x, m− e〉
1− 〈m, e〉

(m− e).

2.4. Virtual isometries and projections of unitary matrices. We now explain how to construct an
infinite dimensional structure which contains in a natural way each finite dimensional unitary group. It
is crucial to our construction that the unitary matrices between different dimensions be closely linked.
This will allow us to give a meaningful definition to almost sure convergence of random matrices as the
dimension grows to infinity.

PROPOSITION 2.12. Let H be a complex Hilbert space, E a finite dimensional subspace of H and F a subspace
of E. Then for any unitary operator u acting on H which fixes every vector in E⊥, there exists a unique unitary
operator πE,F(u) on H which satisfies the following two conditions.

(1) πE,F(u) fixes every vector in F⊥ ⊇ E⊥.
(2) The image of H under u− πE,F(u) is contained in the image of F⊥ under u− 1.
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Moreover if G is a subspace of F, then πF,G ◦ πE,F(u) is a well-defined unitary operator on H and is equal to
πE,G(u).

PROOF. First we prove uniqueness. Let x ∈ F ∩ (u− 1)(F⊥). There exists y ∈ F⊥ such that x =
u(y)− y. Since x ∈ F and y ∈ F⊥ we have

‖u(y)‖2 = ‖y‖2 + ‖x‖2

by the Pythagorean theorem. Since u is unitary ‖u(y)‖ = ‖y‖ so we would require ‖x‖ = 0, hence
F ∩ (u− 1)(F⊥) = {0}.

Now if v1 and v2 are two unitary operators satisfying the properties of πE,F(u), then:

(1) v1 and v2 fix globally F since they fix F⊥.
(2) v1 − v2 vanishes on F⊥ by construction.
(3) The range of v1− v2 is included in (u− 1)(F⊥) since the range of each of v1− u and u− v2 are.

We conclude from (2) and (3) that the image of v1− v2 is contained in F ∩ (u− 1)(F⊥) = {0} and so the
operators must agree.

Next we prove the tower property of πE,F(u), assuming that the operator exists.
Let G ⊂ F ⊂ E ⊂ H. We write v = πE,F(u) and w = πF,G(v). These operators are well-defined and

satisfy

(1) v fixes every vector in F⊥

(2) (u− v)(H) ⊆ (u− 1)(F⊥)
(3) w fixes every vector in G⊥

(4) (v− w)(H) ⊆ (v− 1)(G⊥).
This yields the elementary calculation

(u− w)(H) ⊆ span{(u− v)(H), (v− w)(H)}
⊆ span{(u− 1)(F⊥), (v− 1)(G⊥)}
⊆ span{(u− 1)(F⊥), (u− 1)(G⊥), (u− v)(G⊥)}
⊆ span{(u− 1)(G⊥), (u− v)(H)}
⊆ (u− 1)(G⊥).

Since w fixes each vector of G⊥, it is equal to πE,G(u).
Now we prove the existence of the operator by induction. It is sufficient to prove the existence of

πE,F in the particular case where E = span{F, e}, where e is a unit vector orthogonal to F. In this case,
if u is a unitary operator fixing each vector of E⊥, then the operator v = πE,F(u) can be constructed
explicitly as follows.

If u(e) = e then on taking v = u which fixes span{E⊥, e}, hence it fixes F⊥ and (u − v)(H) =
(u− 1)(F⊥).

If u(e) 6= e then for all x ∈ H we define

v(x) := u(x)− 〈u(x), e− u(e)〉
1− 〈u(e), e〉 (e− u(e)) = r̃ ◦ u

where r̃, as indicated, is the unique reflection mapping u(e) 7→ e. Hence v is a unitary transformation.
Now let x ∈ E⊥ so that u(x) = x and e− u(e) ∈ E since E is globally fixed by u. Here 〈u(x), e−

u(e)〉 = 〈x, e− u(e)〉 = 0 so v(x) = x. Moreover by construction v(e) = e, so consequently v fixes each
vector in F⊥.

Finally, for all x ∈ H, we have u(x) − v(x) = γ(e − u(e)) for some γ ∈ C, so (u − v)(H) ⊆
(u− 1)(F⊥), hence v satisfies the conditions of πE,F(u). �

REMARK 2.13. It follows from Proposition 2.10 that if r := (r̃)−1 is the reflection mapping e onto u(e) then

u = rπE,F(u).

Similarly one can easily prove that u = πE,F ◦ r′ where r′ is the unique reflection such that r′(u−1(e)) = e.

The existence of the projection map described above suggests how to define “virtual isometries”,
the infinite dimensional objects alluded to above. Indeed, let H = `2(C) and (e`)`≥1 be the canonical
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Hilbert basis of H. Then for all n ≥ 1 the space of unitary operators fixing each element of Vn :=
span(e1, . . . , en)⊥ can be canonically identified with the unitary group U(n).

By identification, for n ≥ m ≥ 1 the projection πVn ,Vm gives a map from U(n) to U(m), more simply
noted πn,m, so that, for n ≥ m ≥ p ≥ 1,

πn,p = πm,p ◦ πn,m.

DEFINITION 2.14. A virtual isometry is a sequence (un)n≥1 of unitary matrices such that for all n ≥ 1,
un ∈ U(n) and πn+1,n(un+1) = un. The space of virtual isometries will be denoted U∞.

REMARK 2.15. U∞ does not appear to have a natural group structure.

REMARK 2.16. In this definition we made a particular choice of vector spaces lying in `2(C). Although it
appears to be necessary to make a choice for the probabilistic arguments later, the ideas in this construction apply
also to other Hilbert spaces with a sequence of basis vectors.

PROPOSITION 2.17. Let (xn)n≥1 be a sequence of vectors with xn ∈ Cn lying on the unit sphere (i.e. ‖xn‖`2(Cn) =

1). Then there exists a unique virtual isometry (un)n≥1 such that un(en) = xn for every n ≥ 1. In particular,
un is given by

un = rnrn−1 · · · r1

where for each 1 ≤ j ≤ n, rj = 1 if xj = ej and otherwise is the unique reflection mapping ej 7→ xj.

PROOF. This follows directly from the proof of Proposition 2.12 and the remarks which follow
it. �

REMARK 2.18. In the particular case where every xn = et(n) for some t(n) ∈ {1, . . . , n}, then (un)n≥1
is the sequence of matrices associated to a virtual permutation [23]. The sequence of permutations (σn)n≥1 is
constructed by the so-called Chinese restaurant process [25]: for all n ≥ 1,

σn = τn,t(n)τn−1,t(n−1) · · · τ1,1

where τk,j = 1 if j = k and otherwise is the transposition (j, k).

REMARK 2.19. The above proposition shows in particular the fact that any unitary matrix of U(n) can be
expanded into a product of reflections.

Proposition 2.17 shows in particular that U∞ is non-empty. Moreover, our construction will allow
us to construct measures on U∞. Indeed, it is natural to look for the analogue of Haar measure on U∞.
First, we recall the following correspondence from [4] (this can also be obtained as a consequence of the
results above and the subgroup algorithm of Diaconis and Shahshahani [9]).

PROPOSITION 2.20 ([4]). Let (xn)n≥1 be a random sequence of vectors with xn ∈ Cn and let (un)n≥1 be
the unique virtual isometry such that un(en) = xn for all n ≥ 1. Then for each n ≥ 1 the matrix un is distributed
according to Haar measure if and only if x1, . . . , xn are independent and for each 1 ≤ j ≤ n, xj is distributed
according to the uniform measure on the unit sphere in Cj.

As a consequence, we deduce the compatibility between Haar measure on U(n), n ≥ 1, and the
projections πn,m for n ≥ m ≥ 1.

PROPOSITION 2.21. For all n ≥ m ≥ 1, the push-forward of the Haar measure on U(n) under πn,m is the
Haar measure on U(m).

REMARK 2.22. One has to check that πn,m is measurable as is done in [4]

The compatibility property of Proposition 2.21 allows us to define the Haar measure on U∞.

PROPOSITION 2.23. Let U denote the σ-algebra on U∞ generated by the sets

W(k, B) := {(un)n≥1 | uk ∈ B}
where k ≥ 1 and B ⊆ U(k) is a Borel set. Let (µn)n≥1 be a family of probability measures, µn defined on
(U(n),B(U(n))), where B(U(n)) is the Borel set on U(n), and such that the push-forward of µn+1 by πn+1,n
is equal to µn. Then there exists a unique probability measure µ on (U∞,U ) such that push-forward of µ by the
nth coordinate map is equal to µn for all n ≥ 1.

PROOF. This is the Kolmogorov extension theorem applied to the family (µn)n≥1. See [4]. �
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Now combining Proposition 2.20 and Proposition 2.23 we obtain the following.

PROPOSITION 2.24 ([4]). There exists a unique probability measure µ(∞) on the space (U∞,U ) such that
its push-forward by the coordinate maps is equal to the Haar measure on the corresponding unitary group. In
particular, let (xn)n≥1 be a random sequence of vectors with each xn ∈ Cn almost surely on the unit sphere, and
let (un)n≥1 be the unique virtual isometry such that un(en) = xn. Then the distribution of (un)n≥1 is equal to
µ(∞) if and only if the xn are independent random variables and for all n ≥ 1, xn is uniformly distributed on the
unit sphere.

3. Revisiting and refining the Ketaing-Snaith analysis of the characteristic polynomial

Now we give a simple recursive result for the characteristic polynomial from which many interest-
ing results will follow.

THEOREM 3.1. Let (un)n≥1 be a virtual isometry and for n ≥ 1 let xn = un(en). Note vn = xn −
en. Let ( f (n)k )16k6n be an orthonormal basis of Cn consisting of the eigenvectors of un, with (λ

(n)
k )16k6n the

corresponding eigenvalues. Let Pn(z) be the characteristic polynomail of un, given by

Zn(z) = det(z1− un),

and let us decompose xn+1 ∈ Cn+1 as

xn+1 =
n

∑
k=1

µ
(n)
k f (n)k + γnen+1.

Then for all n ≥ 1 such that xn+1 6= en+1, one has γn 6= 1, and we have the recursive relation:

Zn+1(z) =
Zn(z)
1− γ̄n

[
(z− γn)(1− γ̄n) + (z− 1)

n

∑
k=1

∣∣∣µ(n)
k

∣∣∣2 λ
(n)
k

z− λn
k

]

for all z /∈ {λ(n)
1 , · · · , λ

(n)
n }, γn = 〈xn+1, en+1〉.

PROOF. Since (un)n≥1 is a virtual isometry and xn+1 6= en+1 we have that

un+1 = rn+1(un ⊕ 1),

where rn+1 is the unique reflection such that rn+1(en+1) = xn+1 and where the notation ⊕ stands for
diagonal blocks of matrices. The matrix on rn+1 is given by (see appendix)

rn+1 = 1n+1 −
1

1− γ̄n
vn−1vT

n+1.

Hence for z /∈ {λ(n)
1 , · · · , λ

(n)
n }

Zn+1(z) = det(z1n+1 − un ⊕ 1)det
(

1n+1 +
1

1− γ̄n
(z1n+1 − un ⊕ 1)−1vn+1v̄T

n+1(un ⊕ 1)
)

= (z− 1)Zn(z)

From a well known fact about rank one matrices we have (see Appendix 6 ) det(1 + A) = 1 + Tr(A)
and so

= (z− 1)Zn(z)
(

1 +
1

1− γ̄n
tr{(z1n+1 − un ⊕ 1)−1}vn+1v̄T

n+1(un ⊕ 1)}
)

.

Now we write all matrices in the basis (en+1, f (n)1 , · · · , f (n)n ). The matrix of (un ⊕ 1) is
1 0 · · · 0

0 λ
(n)
1

...
...

. . . 0
0 · · · 0 λ

(n)
n

 .
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The matrix of (z1n+1 − un ⊕ 1)−1
1/(z− 1) 0 · · · 0

0 1/(z− λ
(n)
1 )

...
...

. . . 0
0 · · · 0 1/(z− λ

(n)
n )

 .

Since

vn+1 = xn+1 − en+1 =
n

∑
k=1

µ
(n)
k f (n)k + (γn − 1)en+1

we have

vn+1v̄T
n+1 =


|γn − 1|2 ∣∣∣µ(n)

1

∣∣∣2
∣∣∣µ(n)

n

∣∣∣2

 .

Note that if A = (aij)16i,j6n is a matrix, then A diag(α1, · · · , αn) = (α1c1, · · · , αncn) where cj’s are the

columns of A and diag(α1, · · · , αn)A =

 α1l1
...

αnln

 where li’s are the rows of A. Consequently

Zn+1(z) =
Zn(z)
1− z

[
1 +

1
1− γ̄n

(
|1− γn|2

z− 1
+

n

∑
k=1

∣∣∣µ(n)
k

∣∣∣ λ
(n)
k

z− λ
(n)
k

)]
the result follows by a simple expansion. �

COROLLARY 3.2. The following hold:
(1) Let (xn)n≥1 be independent random variables such that xn is uniformly distributed on S n

C . Let (un)n≥1
be the unique virtual isometry such that xn = un(en). Let Zn = det(1− un). Then

Zn = (1− γn−1)(1− γn−2) · · · (1− γ0)

where γk = 〈xk+1, ek+1〉.
(2) Let U ∈ U(n) be Haar distributed, then

det(1n −U)
law
=

n

∏
k=1

(1 + eiθk
√

B1,k−1)

law
=

n

∏
k=1

(1− eiθk
√

B1,k−1)

where θ1, · · · , θn are uniformly distributed on [0, 2π], B1,k−1 is Beta distributed with parameters 1,
k− 1 with the convention that B1,0 = 1 a.s., and all variables in sight are independent.

PROOF. In the previous proposition if we take z = 1, we have

Zn+1(1) =
Zn(1)
1− γ̄n

(1− γn)(1− γ̄n) = (1− γn)Zn(1)

which implies that
Zn+1 = Zn(1− γn).

The the first result follows with a simple induction.
The distribution decomposition follows from the well known fact (see Appendix 2 for background

on uniform distributions) that if xk is uniformly distributed on Sk
C, then for all j,

〈
xk, ej

〉
is distributed

like
eiθk
√

B1,k−1.

Then

Zn
law
=

n

∏
k=1

(1− eiθk
√

B1,k−1)
law
=

n

∏
k=1

(1 + eiθk
√

B1,k−1)
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which follows from the fact that −eiθk
law
= eiθk .

�

Now we see that the joint moment generating function for the characteristic polynomial follows
easily from our decomposition into a product of independent random variables.

LEMMA 3.3. Let X = 1 + eiθ√β where θ is uniformly distributed on [0, 2π], independent of β which
follows a Beta distribution with parameters 1 and k− 1 for k ≥ 1. Then for all t and s such that Re(t± s) > −2
and Re(t) > −1 we have

E[|X|teis arg(X)] =
Γ(k)Γ(k + t)

Γ(k + t+s
2 )Γ(k + t−s

2 )
.

PROOF. We use notation from Appendix 4 on hypergeometric functions. We begin by noting that

X(t+s)/2X−(t−s)/2 = |X|teis arg(X)

and thus

E[|X|teis arg(X)] = E[X(t+s)/2X−(t−s)/2]

= E[(1 + eiθ√β)a(1 + e−iθ√β)b], a = t+s
2 , b = t−s

2 .

Note that a.s.
√

β < 1

(1 + x)u =
∞

∑
k=0

(−1)k(−u)kxk

k!
|x| < 1,

with
(−u)k = (−u)(−u + 1) · · · (−u + k− 1).

As
∣∣eiθ√β

∣∣ < 1 a.s., we have

E[|X|teis arg(X)] = E

[
∞

∑
k=0

(−1)k(−a)k
k!

βk/2eikθ
∞

∑
l=0

(−1)l(−b)l
l!

βl/2e−ilθ

]
.

Since E[eimθ ] = 0 if m 6= 0

=
∞

∑
l=0

(−1)2l(−a)l(−b)l
l!l!

E[βl ].

But

E[βl ] =
Γ(1 + l)Γ(k)
Γ(1)Γ(l + k)

=
l!
(k)l

so that in fact we have

=
∞

∑
l=0

(−a)l(−b)l
l!

1
(k)l

= 2F1(−a,−b, k; 1)

=
Γ(k)Γ(k + t)

Γ(k + t+s
2 )Γ(k + t−s

2 )

by Gauss’ formula. �

THEOREM 3.4. We have for Re(t) > −1:

E[|Zn|teis arg(X)] =
n

∏
k=1

Γ(k)Γ(k + t)
Γ(k + t+s

2 )Γ(k + t−s
2 )

.

PROOF. Follows from independence and the previous lemma. �

We now want to show that
log Zn√

1
2 log n

law→N1 + iN2

as n→ ∞. One way of doing this, is to consider

log

(
n

∏
k=1

(1 + eiθk
√

B1,k−1)

)
=

n

∑
k=1

log(1 + eiθk
√

B1,k−1)
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and we have a sum of independent random variables. We would rather use another decomposition
result.

THEOREM 3.5. Let (β j,j−1) be independent Beta variables with parameters j and j− 1 (with the construction
that β1,0 = 1 a.s.). Define W1, · · · , Wn as independent random variables that are independent of (β j,j−1)1≤j≤n
with Wj having density

σ2(j−1)(dv) =
22(j−1)((j− 1)!)2

π(2j− 2)!
cos2(j−1)(v)1(−π/2,π/2)(v)dv.

The joint distribution of (Im(log(Zn)), |Zn|) is

(Im(log Zn), |Zn|)
law
=

(
n

∑
j=1

Wj,
n

∏
j=1

β j,j−12 cos(Wj)

)
.

LEMMA 3.6. Let Wj have density

Kjcos2(j−1)(v)1(−π/2,π/2)(v)dv

where Jj is a normalizing constant. Next, let Xj := β j,j−12 cos(Wj)e
iWj . Then for Re(t) > −1, one has

E[
∣∣Xj
∣∣teis arg(Xj)] =

Γ(j)Γ(j− t)
Γ(j + t+s

2 )Γ(j + t−s
2 )

.

Recall the classical results on Wallis’ integrals:∫ π/2

−π/2
cos2(j−1)(v)dv = 2

∫ π/2

0
cos2(j−1)(v)dv = 2

∫ π/2

0
sin2(j−1)(v)dv = 2I2(j−1)

with

In =
∫ π/2

0
sinn(v)dv.

Integration by parts yields

In+2 =
n + 1
n + 2

In.

Thus ∀p ∈N∗

I2p =
(2p− 1)(2p− 3) · · · 1
(2p)(2p− 2) · · · 2

π

2
=

(2p)!

22p(p!)2
π

2
.

PROOF OF THE LEMMA. One has

E[
∣∣Xj
∣∣teis arg(Xj)] = E[

∣∣β j,j−12 cos Wj
∣∣teisWj ]

= E[
∣∣∣β j,j−1 j

∣∣∣t]E[∣∣2 cos Wj
∣∣teisWj ]

= E[
∣∣∣β j,j−1 j

∣∣∣t] Γ2(j)
πΓ(j− 1)!

∫ π/2

−π/2
eisx(eix + e−ix)

t
(eix + e−ix)

2(j−1)
dx

We already saw that

E[
∣∣∣β j,j−1 j

∣∣∣t] = Γ(j + t)Γ(2j− 1)
Γ(j)Γ(2j− 1 + t)

.

Moreover, we note that

eisx(eix + e−ix)t(eix + e−ix)2(j−1) = (1 + e2ix)j−1+(t+s)/2(1 + e−2ix)j−1+(t−s)/2.

We now expand the right hand side as a hypergeometric function for x 6= 0

(1 + e2ix)j−1+(t+s)/2=1F0(−(j− 1 + t+s
2 );−e2ix),

(1 + e−2ix)j−1+(t−s)/2=1F0(−(j− 1 + t−s
2 );−e−2ix).

We now integrate between (−π/2, π/2)∫ π/2

−π/2
eisx(eix + e−ix)

2(j−1)
(eix + e−ix)

t
dx

=
∫ π/2

−π/2
1F0(−(j− 1 + t+s

2 );−e2ix)1F0(−(j− 1 + t−s
2 );−e−2ix)dx
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Since ∫ π/2

−π/2
e2ikxdx = 0

if k 6= 0 and π otherwise. Hence only diagonal terms in the double sum will survive to give

π2F1

(
−(j− 1 + t+s

2 ), (j− 1 + t−s
2 )

1 ; 1
)

,

which by Gauss’s formula for Re(t) > −1

π
Γ(2j− 1 + t)

Γ(j + t+s
2 )Γ(j + t−s

2 )

this ends the proof. �

THEOREM 3.7. We note again Zn = det(1n −U), where U ∈ U(n) and is Haar distributed. Then

log Zn√
1
2 log n

law→
n→∞

N1 + iN2,

where N1 and N2 arw two standard independent Gaussian random variables.

PROOF. Let us first recall a few facts about cumulants. The equation

E[eitX ] =
∞

∑
n=0

E[Xn]intn

is not true in all generality.
Assume that X is a random variable such that E[etX ] exists for all t < ε. Then we define the cumulant
of order n and note it χN by

g(t) := log E[etX ] =
∞

∑
n=0

χn
tn

n!
.

If instead we consider the characteristic function

h(t) := log E[e−itX ] =
∞

∑
n=0

χn
(it)n

n!
.

More generally, if X has a moment or order h, then

log(E[eitx]) =
h

∑
n=0

χn
(it)n

n!
+ o(th).

Note that χ1 = E[X]. If E[X] = 0, then χ1 = 0 and we have χ2 = var(X) = E[X2]. Note that
for the Gaussian distribution all cumulants χn for n ≥ 3 are zero. Finally, note that, if X anbd Y are
independent, then

χn(X + Y) = χn(X) + χn(Y).

We also introduce the polygamma functions

ψ(z) =
Γ′(z)
Γ(z)

, ψ(k)(z) =
dk+1

dzk+1 log Γ(z).

It is known that as z→ ∞, |arg z| < π we have

ψ(z) ∼ log z− 1
2z
−

∞

∑
n=1

B2n

z2n

ψ(k)(z) ∼ (−1)k−1

[
(k− 1)!

zk +
k!

2zk+1 +
∞

∑
n=0

B2n
(2n + k− 1)!
(2n)!z2n+k

]
where B2n are the Bernoulli numbers given by

x
ex − 1

=
∞

∑
n=0

Bn
xn

n!
.

44



We denote Tj := log(β j,j−12 cos Wj)

(log |Zn| , arg Zn)
law
=

(
n

∑
j=1

Tj,
n

∑
j=1

Wj

)
.

Furthermore

E[eisWj ] =
Γ2(j)

Γ(j + s
2 )Γ(j− s

2 )
.

For Re(t) > −1

E[etTj ] =
Γ(j)Γ(j + t)

Γ2(j + t
2 )

.

Let ψj,k denote the kth cumulant of Tj and let Rj,k denote the kth cumulant of Wj. Then

g(t) := log(E[etTj ]) = log(Γ(j)) + log(Γ(j + t))− 2 log Γ(j + t
2 )

which implies that

g(k)(t) = ψ(k−1)(j + t)− 1
2k−1 ψ(k−1)(j + t

2 )

and

ψj,k = g(k)(0) =
2k−1 − 1

2k−1 ψ
(k−1)
j .

Similarly,

Rj,k =
(−1)k/2+1

2k−1 ψ
(k−1)
j

when k is even and 0 when k is odd. Since Tj and Wj are independent, the kth cumulant of ∑n
j=1 Tj is

2k−1 − 1
2k−1

n

∑
j=1

ψ
(k−1)
(j) .

The kth cumulant of ∑n
j=1 Wj is

(−1)k/2+1

2k−1

n

∑
j=1

ψ
(k−1)
(j) 1k even.

The first cumulant is zero so the sums are centered. The second cumulant gives the variance and this
shows that

var

(
n

∑
j=1

Tj

)
∼ 1

2

n

∑
j=1

1
j
∼ 1

2
log n,

var

(
n

∑
j=1

Wj

)
∼ 1

2

n

∑
j=1

1
j
∼ 1

2
log n.

Let

LN =
1

S3
N

N

∑
n=1

E[|Tn|3], S2
N =

N

∑
j=1

E[
∣∣Tj
∣∣2] ∼ 1

2
log n

LN
′ =

1
σ3

N

N

∑
n=1

E[|Wn|3], σ3
N =

N

∑
j=1

E[
∣∣Wj
∣∣2] ∼ 1

2
log n.

Since
N

∑
n=1

E[|Tn|3] < ∞,
N

∑
n=1

E[|Wn|3] < ∞

we have that LN → 0 and L′N → 0 as well. Next, how to check that the following holds?
∞

∑
n=1

E[|Tn|3] < ∞,
N

∑
n=1

E[|Wn|3] < ∞

For instance, we know that E[
∣∣Wj
∣∣3] ≤ E[

∣∣Wj
∣∣4]3/4. One checks that

E[
∣∣Wj
∣∣4]3/4 = (Rj,4 + 3R2

2,j)
3/4 ∼ c/j3/2
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which implies that

∑ E[
∣∣Wj
∣∣3] < ∞,

and the same thing for Tj. �

From now on we write

Φ(x) =
∫ x

−∞
e−t2/2 dt√

2π
,

and use classical results around central limit theorems and the law of the iterated logarithm.

COROLLARY 3.8. The following estimates on the rate of convergence of the CLT hold:
(1) for the real part, ∣∣∣∣∣∣P

Re(log Zn)√
1
2 log n

6 x

−Φ(x)

∣∣∣∣∣∣ 6 C

(log n)3/2(1 + |x|)3

(2) for the imaginary part,∣∣∣∣∣∣P
 Im(log Zn)√

1
2 log n

6 x

−Φ(x)

∣∣∣∣∣∣ 6 C

(log n)3/2(1 + |x|)3

where C > 0 is a constant.

COROLLARY 3.9. Let (Un)n≥1 be a virtual isometry which is Haar distributed (i.e. with distribution µ∞
on U∞). Define Zn := Zn(1). Then µ∞-a.s.

(1) for the real part,

lim sup
n→∞

Re(log Zn)√
log n log log log n

= 1,

(2) for the imaginary part,

lim inf
n→∞

Im(log Zn)√
log n log log log n

= −1.

4. Almost sure convergence of eigenvalues

We consider a sequence (un)n≥1 of virtual isometries. We assume throughout that for each n ≥ 1,
the n eigenvalues of un are distinct; this holds almost surely for virtual isometries constructed according
to the Haar measure.

We recall that the eigenvalues of un, λ
(n)
1 , λ

(n)
2 , . . . , λ

(n)
n , are ordered in such a way that λ

(n)
k = eiθ(n)k ,

and
0 < θ

(n)
1 < · · · < θ

(n)
n < 2π.

Moreover, the eigenangles enjoy a property of periodicity: for all k ∈ Z, θ
(n)
k+n = θ

(n)
k + 2π.

As all the eigenvalues are distinct, each eigenvalue corresponds to a one-dimensional eigenspace.
We can therefore write f (n)1 , ..., f (n)n for the family of unit length eigenvectors of un, which are well-

defined up to a complex phase: the notation f (n)k is then extended n-periodically to all k ∈ Z.
Let xn = un(en) and let rn denote the unique reflection on Cn mapping en to xn. Therefore, we have

un+1 = rn+1 ◦ (un ⊕ 1). It is natural to decompose xn+1 into the basis given by ι( f (n)1 ), ..., ι( f (n)n ), en+1,

where ι : Cn → Cn+1 is the inclusion which maps (x1, . . . , xn) to (x1, . . . , xn, 0). Identifying f (n)k and

ι( f (n)k ), we then have

xn+1 =
n

∑
k=1

µ
(n)
k f (n)k + νnen+1

for some µ
(n)
k (1 ≤ k ≤ n) and νn such that |µ(n)

1 |2 + · · ·+ |µ
(n)
n |2 + |νn|2 = 1. Again, is can be convenient

to consider µ
(n)
k for all k ∈ Z, by a n-periodic extension of the sequence. The following result gives the

spectral decomposition of un+1 in function of the decomposition of un and xn+1:
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THEOREM 4.1 (Spectral decomposition). On the event that the coefficients µ
(n)
1 , . . . , µ

(n)
n are all different

from zero and that the n eigenvalues of un are all distinct (which holds almost surely under the uniform measure
on U∞), the eigenvalues of un+1 are the unique roots of the rational equation

n

∑
j=1
|µ(n)

j |
2

λ
(n)
j

λ
(n)
j − z

+
|1− νn|2

1− z
= 1− νn

on the unit circle. Furthermore, they interlace between 1 and the eigenvalues of un

0 < θ
(n+1)
1 < θ

(n)
1 < θ

(n+1)
2 < · · · < θ

(n)
n < θ

(n+1)
n+1 < 2π.

and if the phases of the eigenvectors are suitably chosen, they satisfy the relation

(h(n+1)
k )

1
2 f (n+1)

k =
n

∑
j=1

µ
(n)
j

λ
(n)
j − λ

(n+1)
k

f (n)j +
νn − 1

1− λ
(n+1)
k

en+1

where

h(n+1)
k =

n

∑
j=1

|µ(n)
j |

2

|λ(n)
j − λ

(n+1)
k |2

+
|νn − 1|2

|1− λ
(n+1)
k |2

is the unique strictly positive real number which makes f (n+1)
k a unit vector.

PROOF. Let f be an eigenvector of un+1 with corresponding eigenvalue z. Then we have

f =
n

∑
j=1

aj f (n)j + ben+1

where a1, ..., an, b are (as yet unknown) complex numbers, not all zero. Our goal is to write these coeffi-
cients in terms of xn+1 and the eigenvalues of un.

We have

z f = un+1 f

= un+1

(
n

∑
j=1

aj f (n)j + ben+1

)

=
n

∑
j=1

ajun+1 f (n)j + bun+1en+1

=
n

∑
j=1

ajλ
(n)
j rn+1 f (n)j + bxn+1.

We recall that for all t ∈ Cn+1, rn+1(t) is given by

rn+1(t) = t +
〈t, xn+1 − en+1〉
〈en+1, xn+1 − en+1〉

(xn+1 − en+1)

so that

z f =
n

∑
j=1

ajλ
(n)
j

 f (n)j +
〈 f (n)j , xn+1 − en+1〉
〈en+1, xn+1 − en+1〉

(xn+1 − en+1)

+ bxn+1.

Now we decompose

xn+1 =
n

∑
k=1

µ
(n)
k f (n)k + νnen+1
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and

z f =
n

∑
j=1

ajλ
(n)
j

 f (n)j +
µ
(n)
j

νn − 1
(xn+1 − en+1)

+ bxn+1

=
n

∑
j=1

ajλ
(n)
j f (n)j +

 n

∑
`=1

a`λ
(n)
`

µ
(n)
`

νn − 1

 (xn+1 − en+1) + bxn+1.

Because f (n)1 , ..., f (n)n , en+1 is a basis for Cn+1, we deduce the system of n + 1 equations

zaj = ajλ
(n)
j + µ

(n)
j

n

∑
`=1

a`λ
(n)
`

µ
(n)
`

νn − 1
+ bµ

(n)
j

for j = 1, . . . , n and

zb = b + (νn − 1)
n

∑
`=1

a`λ
(n)
`

µ
(n)
`

νn − 1
+ b(νn − 1).

For z /∈ {λ(n)
1 , . . . , λ

(n)
n , 1}, let us consider the linear transform Q : Cn+1 → Cn+1 whose matrix repre-

sentation in the basis f (n)1 , . . . , f (n)n , en+1 is

Q = I + wvt,

where

w =



µ
(n)
1

λ
(n)
1 −z

...
µ
(n)
n

λ
(n)
n −z
νn−1
1−z


and

vt =

λ
(n)
1

µ
(n)
1

νn − 1
, · · · , λ

(n)
n

µ
(n)
n

νn − 1
, 1

 .

Then, the above system can be written
Q f = 0.

Clearly, rank Q ∈ {n, n + 1}. If it has full rank then f = 0, but we assume a priori that z is an eigenvalue
for un+1 and so has a non-trivial eigenspace. Thus we must have rank Q = n and

0 = Q f = f + w(vt f ).

The right hand side can only vanish if f is proportional to w, so f = αw for some complex constant
α ∈ C \ {0} and vtw = −1. In particular,

n

∑
j=1

λ
(n)
j |µ

(n)
j |

2

λ
(n)
j − z

+
|νn − 1|2

1− z
= 1− νn,

as required.
Conversely, if z /∈ {λ(n)

1 , . . . , λ
(n)
n , 1} satisfies this equation, then

Qw = w + w(vtw) = w + w(−1) = 0,

which implies that w is an eigenvector of un+1 for the eigenvalue z.
Let us now show that the eigenvalues z /∈ {λ(n)

1 , . . . , λ
(n)
n , 1} of un+1 strictly interlace between 1 and

the eigenvalues of un: since un+1 has at most n + 1 eigenvalues, this implies that λ
(n)
1 , . . . , λ

(n)
n , 1 are not

eigenvalues of un+1.
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Define the rational function Φ : S1 → C∪ {∞} by

Φ(z) =
n

∑
j=1

λ
(n)
j |µ

(n)
j |

2

λ
(n)
j − z

+
|νn − 1|2

1− z
− (1− νn)

Note that Φ vanishes precisely on the eigenvalues of un+1 which are different from λ
(n)
1 , . . . , λ

(n)
n , 1.

Recalling that |µ(n)
1 |2 + · · ·+ |µ

(n)
n |2 + |νn|2 = 1, we can rearrange the expression of Φ to the equivalent

form

Φ(z) =
1
2

 n

∑
j=1
|µ(n)

j |
2

λ
(n)
j + z

λ
(n)
j − z

+ |1− νn|2
1 + z
1− z

− νn + νn

 .

Hence, Φ takes values only in iR ∪ {∞}, since for all z 6= z′ ∈ S1, (z + z′)/(z− z′) is purely imaginary
(the triangle (−z′, z, z′) has a right angle at z). Note that for z ∈ {λ(n)

1 , . . . , λ
(n)
n , 1}, a unique term of the

sum defining Φ is infinite, since by assumption, µ
(n)
1 , . . . , µ

(n)
n , 1− νn are nonzero and λ

(n)
1 , . . . , λ

(n)
n , 1

are distinct: Φ(z) = ∞.
Next, we consider t 7→ Φ(eit) in a short interval (θ(n)j − δ, θ

(n)
j + δ). Then, for t = θ

(n)
j + u in this

interval,

λ
(n)
j + λ

(n)
j eiu

λ
(n)
j − λ

(n)
j eiu

=
1 + eiu

1− eiu = 2iu−1 + O(1)

while the other terms in Φ(eit) are uniformly bounded as δ → 0; likewise for the interval (−δ, δ). In
particular, Φ → i∞ as u → 0 from the right and Φ → −i∞ as u → 0 from the left. We therefore
conclude, as Φ is continuous, that on each interval of the partition

(0, θ
(n)
1 ) ∪ (θ

(n)
1 , θ

(n)
2 ) ∪ · · · ∪ (θ

(n)
n , 2π)

of the unit circle into n + 1 parts, t 7→ Φ(eit) must assume every value on the line iR, and in particular
must have at least one root. But we know that Φ has only n + 1 roots on the circle so there must be
exactly one root in each part of the partition, which proves the interlacing property.

It remains to check the expression of the eigenvectors ( f (n+1)
k )1≤k≤n+1 given in the theorem, but

this expression is immediately deduced from the expression of the vector w involved in the operator Q
defined above, and the fact that ‖ f (n+1)

k ‖ = 1.
�

In order to prove the convergence of the normalized eigenangles of un when n goes to infinity, we
need the following lemma. It should also be noted that all the strong convergence results that follow
rely on a priori estimates given in Appendix 7.

LEMMA 4.2. Let ε > 0. Then, almost surely under the Haar measure on U∞, for n ≥ 1 and 0 < k ≤ n1/4,
we have

θ
(n+1)
k |µ(n)

k |
2

θ
(n)
k − θ

(n+1)
k

= 1 + O(kn−
1
3+ε)

and for n ≥ 1 and −n1/4 ≤ k ≤ 0,

θ
(n+1)
k |µ(n)

k |
2

θ
(n)
k − θ

(n+1)
k

=
θ
(n+1)
k |µ(n)

k+n|
2

θ
(n)
k − θ

(n+1)
k

= 1 + O((1 + |k|)n−
1
3+ε),

REMARK 4.3. The implied constant in the O(·) notation depends on (um)m≥1 and ε: in particular, it is a
random variable. However, for given (um)m≥1 and ε, it does not depend on k and n.

49



PROOF. By symmetry of the situation, we can assume k > 0. Moreover, let us fix ε ∈ (0, 0.01). We
will suppose that the event E := E0 ∩ E1 ∩ E2,∩ E3 holds ( see Appendix 7) , where

E0 = {θ(1)0 6= 0} ∩ {∀n ≥ 1, νn 6= 0} ∩ {∀n ≥ 1, 1 ≤ k ≤ n, µ
(n)
k 6= 0}

E1 = {∃n0 ≥ 1, ∀n ≥ n0, |νn| ≤ n−
1
2+ε}

E2 = {∃n0 ≥ 1, ∀n ≥ n0, 1 ≤ k ≤ n, |µ(n)
k | ≤ n−

1
2+ε}

E3 = {∃n0 ≥ 1, ∀n ≥ n0, k ≥ 1, n−
5
3−ε ≤ θ

(n)
k+1 − θ

(n)
k ≤ n−1+ε}.

It is possible to do this assumption, since by the result proven in Appendix 7, the event E occurs almost
surely. As we will see now, this a priori information on the distribution of the eigenvalues of the random
virtual isometry implies strong quantitative bounds on the change in eigenvalues of successive unitary
matrices.

Recall from Theorem 4.1 that

n

∑
j=1

λ
(n)
j |µ

(n)
j |

2

λ
(n)
j − λ

(n+1)
k

+
|1− νn|2

1− λ
(n+1)
k

= 1− νn.

By using the n-periodictiy of λ
(n)
j , µ

(n)
j , f (n)j with respect to j, we can write

(10) ∑
j∈J

λ
(n)
j |µ

(n)
j |

2

λ
(n)
j − λ

(n+1)
k

+
|1− νn|2

1− λ
(n+1)
k

= 1− νn,

where J is the random set of n consecutive integers, such that θ
(n+1)
k − π < θ

(n)
j ≤ θ

(n+1)
k + π. Iterating

the lower bound on the distance between adjacent eigenvalues, given by the definition of the event E3,
we get, for j ∈ J\{k− 1, k},

|θ(n)j − θ
(n+1)
k | & |k− j|n−

5
3−ε,

and then
|λ(n)

j − λ
(n+1)
k | & |k− j|n−

5
3−ε,

since |θ(n)j − θ
(n+1)
k | ≤ π.

Likewise, we have by E3, 1− λ
(n+1)
k = O(kn−1+ε), and by E2, |µ(n)

j |
2 = O(n−1+2ε), which gives, for

j ∈ J\{k− 1, k},
λ
(n)
j (1− λ

(n+1)
k )|µ(n)

j |
2

λ
(n)
j − λ

(n+1)
k

.
k

|k− j|n
− 1

3+4ε.

Summing for j in J\{k− 1, k}, which is included in the interval [k− 1− n, k + n], gives

∑
j∈J\{k−1,k}

λ
(n)
j (1− λ

(n+1)
k )|µ(n)

j |
2

λ
(n)
j − λ

(n+1)
k

= O(kn−
1
3+4ε log n) = O(kn−

1
3+5ε).

Now, subtracting this equation from the product of (10) by 1− λ
(n+1)
k , and bounding νn = O(n−

1
2+ε)

(by the property E1) gives us the resulting equation

λ
(n)
k (1− λ

(n+1)
k )|µ(n)

k |
2

λ
(n)
k − λ

(n+1)
k

1k∈J +
λ
(n)
k−1(1− λ

(n+1)
k )|µ(n)

k−1|
2

λ
(n)
k−1 − λ

(n+1)
k

1k−1∈J = −1 + O(kn−
1
3+5ε).

Next we estimate the first two terms in terms of the eigenangles. We find

1− λ
(n+1)
k = −iθ(n+1)

k + O((θ
(n+1)
k )2)

and
λ
(n)
j − λ

(n+1)
k = i(θ(n)j − θ

(n+1)
k )λ

(n)
j + O((θ

(n)
j − θ

(n+1)
k )2)

for j = k− 1, k. Collecting terms and using the trivial bounds gives
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(11)
θ
(n+1)
k |µ(n)

k |
2

θ
(n)
k − θ

(n+1)
k

(
1 + O(kn−1+ε)

)
1k∈J

+
θ
(n+1)
k |µ(n)

k−1|
2

θ
(n)
k−1 − θ

(n+1)
k

(
1 + O(kn−1+ε)

)
1k−1∈J = 1 + O(kn−

1
3+5ε).

From Theorem 4.1, the eigenvalues of un and un+1 interlace, so for n sufficiently large the real part of
the first term is positive and the real part of the second term is negative. The real part of the right hand
side tends to 1 as n grows with k fixed, so the first term has real part bounded below for n sufficiently
large. In particular,

θ
(n+1)
k |µ(n)

k |
2

θ
(n)
k − θ

(n+1)
k

& 1.

Using the a priori bounds for θ
(n+1)
k and |µ(n)

k |
2, we find

θ
(n)
k − θ

(n+1)
k . kn−2+3ε.

Hence,

θ
(n+1)
k − θ

(n)
k−1 = (θ

(n)
k − θ

(n)
k−1)− (θ

(n)
k − θ

(n+1)
k ) & n−

5
3−ε −O(kn−2+3ε) & n−

5
3−ε,

since kn−2+3ε/n−
5
3−ε = O(n1/4−2+0.03+5/3+0.01) = o(1). We deduce that the second term of (11) is

dominated by kn−1/3+4ε, and then

θ
(n+1)
k |µ(n)

k |
2

θ
(n)
k − θ

(n+1)
k

= 1 + O(kn−
1
3+5ε).

Changing the value of ε appropriately gives the desired result. �

This lemma is enough for us to estimate the change in θ
(n)
k as n grows, and in particular to find a

limit for the renormalized angle.

THEOREM 4.4. There is a sine-kernel point process (yk)k∈Z such that almost surely,
n

2π
θ
(n)
k = yk + O((1 + k2)n−

1
3+ε),

for all n ≥ 1, |k| ≤ n1/4 and ε > 0, where the implied constant may depend on (um)m≥1 and ε, but not on n
and k.

PROOF. The proof proceeds exactly as in [4]. It is sufficient to prove the result for ε equal to the
inverse of an integer: hence, it is enough to show the estimate for fixed ε. By symmetry, one can take
k > 0. We rearrange the equation in Lemma 4.2 to find

|µ(n)
k |

2 =

(
θ
(n)
k

θ
(n+1)
k

− 1

)
(1 + O(kn−

1
3+ε))

Because almost surely, |µ(n)
k |

2 = O(n−1+2ε), we get

|µ(n)
k |

2 =
θ
(n)
k

θ
(n+1)
k

− 1 + O(kn−
4
3+3ε).

Using the asymptotic log(1− δ) = −δ + O(δ2) for δ = o(1), we conclude, if ε is small enough,

log
θ
(n)
k

θ
(n+1)
k

= |µ(n)
k |

2 + O(kn−
4
3+3ε).
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Define the random variable L(n)
k = log θ

(n)
k +∑n−1

j=1 |µ
(j)
k |

2; we have just shown L(n+1)
k − L(n)

k = O(kn−
4
3+3ε)

so for k fixed, L(n)
k converges to a limit L(∞)

k almost surely as n → ∞, with |L(n)
k − L(∞)

k | = O(kn−
1
3+3ε).

Now,

exp L(n)
k = θ

(n)
k exp

n−1

∑
j=k
|µ(j)

k |
2

= nθ
(n)
k exp

(
− log n +

n−1

∑
j=1

1
j
+

n−1

∑
j=1

(|µ(j)
k |

2 − 1
j
)

)

Recall − log n + ∑n−1
j=1

1
j = γ + O(n−1) where γ is the Euler-Mascheroni constant. Next we define

M(n)
k :=

n−1

∑
j=1

(
|µ(j)

k |
2 − 1

j

)
and observe that each term of the sum is an independent mean-zero random variable. Therefore, for k
fixed, (M(n)

k )n≥k is a martingale. We claim that M(n)
k is bounded in L2; in fact,

E(|µ(n)
k |

2 − 1
n
)2 = O(n−2).

so that

E((M(∞)
k −M(n)

k )2) = ∑
j≥n

E(|µ(n)
k |

2 − 1
n
)2 = O(n−1),

where M(∞)
k is the claimed limit of M(n)

k (this limit exists since M(n)
k is a sum of centered and indepen-

dent random variables with summable variances). To see this, we write

|µ(n)
k |

2 =
e1

e1 + · · ·+ en

where the variables er are independent standard exponential random variables. Then we compute

E(|µ(n)
k |

2 − 1
n
)2 = E

(
(n− 1)e1 − e2 − · · · − en

n(e1 + · · ·+ en)

)2

.

As shown before in this paper, P(e1 + · · ·+ en ≤ n
2 ) = O(n−C) for all C ≥ 2 so that

E(|µ(n)
k |

2 − 1
n
)2 ≤ O(n−C) +

4
n4 E(((n− 1)e1 − e2 − · · · − en)

2)

≤ O(n−2)

Now, by the triangle inequality and Doob’s maximal inequality, for q positive integer, k ≤ 2q,

E(sup
n≥2q

(M(∞)
k −M(n)

k )2) . E((M(∞)
k −M(2q)

k )2) + E(sup
n≥2q

(M(n)
k −M(2q)

k )2)

. E(M(∞)
k −M(2q)

k )2

= O(2−q).

Hence,

E

[
sup

2q≤n≤2q+1
sup

k≤n1/4
(M(∞)

k −M(n)
k )2

]
≤ E

[
sup

k≤2(q+1)/4
sup

2q≤n≤2q+1
(M(∞)

k −M(n)
k )2

]

≤ ∑
k≤2(q+1)/4

E

[
sup

2q≤n≤2q+1
(M(∞)

k −M(n)
k )2

]
. 2(q+1)/42−q = O(2−3q/4)
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and

E

[
sup
n≥2q

sup
k≤n1/4

(M(∞)
k −M(n)

k )2

]
≤ ∑

r≥q
E

[
sup

2r≤n≤2r+1
sup

k≤n1/4
(M(∞)

k −M(n)
k )2

]
. ∑

r≥q
2−3r/4 = O(2−3q/4).

By Markov’s inequality, we get

P(sup
n≥2q

sup
k≤n1/4

|M(∞)
k −M(n)

k | ≥ 2−q/3) ≤ 22q/3E(sup
n≥2q

sup
k≤n1/4

(M(∞)
k −M(n)

k )2) = O(2−q/12),

which, by Borel-Cantelli lemma, shows that almost surely for some q0 ≥ 1, all q ≥ q0, n ≥ 2q and
k ≤ n1/4 satisfy |M(∞)

k −M(n)
k | ≤ 2−q/3. Hence,

|M(∞)
k −M(n)

k | = O(n−
1
3 )

almost surely. Collecting these estimates and applying them to the equation

exp L(n)
k = nθ

(n)
k exp(γ + O(n−1) + M(n)

k )

gives us
exp

(
L(∞)

k + O(kn−
1
3+3ε)

)
= nθ

(n)
k exp(γ + M(∞)

k + O(n−
1
3 ))

Rearranging,

nθ
(n)
k = exp(L(∞)

k −M(∞)
k − γ)(1 + O(kn−

1
3+3ε)) =: 2πyk(1 + O(kn−

1
3+3ε).

Now, by [4], (yk)k∈Z is a determinantal sine-kernel process, so we have almost surely the estimate
yk = O(1 + |k|), which proves Theorem 4.4. �

53





CHAPTER 3

The Ramachandra conjecture and local limit theorems

1. A general local limit theorem

In this chapter, we take a closer look at the Ramachandra conjecture, which is the statement that the
set ζ(1/2+ it), when t ∈ R, is dense in C, following [8]. In [20], we proved that a quantitative version of
the moments conjecture implies the Ramachandra conjecture and we proved the analogue for function
fields. Here we wish to show that a much weaker statement than the moments conjecture implies the
Ramachandra conjecture. We first start by noting that while Selberg’s limit theorem can be viewed as
a central limit theorem, Ramachandra’s conjecture is more a statement of the local limit theorem type.
We hence try to work in a framework in which we have a sequence of random vectors which satisfy a
central limit theorem and from which we want to deduce a local limit theorem.

Our results heavily rely on Fourier analysis so we first mention the conventions we shall take. We
define the Fourier transform as is usually done in probability theory, namely

f̂ (t) =
∫

Rd
exp(i t · x) f (x) dx.

The inversion formula is, at least when f̂ ∈ L1(Rd), given by

f (x) =
(

1
2π

)d ∫
Rd

exp(−it · x) f̂ (t) dt.

In particular, when µ is a probability measure with an integrable characteristic function ϕ, we get
that µ is absolutely continuous with respect to Lebesgue measure m, and its density is given by

dµ

dm
(x) =

(
1

2π

)d ∫
exp(−it · x)ϕ(t) dt,

which is therefore continuous.
We fix d ≥ 1 and a probability measure µ on Rd. We then assume given a sequence (Xn) of random

variables defined on a probability space (Ω,F , P) and taking values in Rd. We define ϕn to be the
characteristic function of Xn. We now consider the following properties:

• H1. The characteristic function ϕ of the probability measure µ is integrable; in particular, µ
has a density dµ/dm, with respect to Lebesgue measure m.
• H2. There exists a sequence of linear automorphisms An ∈ GLd(R), with inverses Σn = A−1

n ,
such that Σn converges to 0 and ϕn(Σ∗nt) converges continuously at 0 (or what is equiva-
lent: uniformly on compact sets) to ϕ(t). In other words, the renormalized random variables
Σn(Xn) converge in law to µ. (Recall that Σ∗n is the transpose of Σn.)

• H3. For all k ≥ 0, the sequence

fn,k = ϕn(Σ∗nt)1|Σ∗nt|≤k

is uniformly integrable on Rd; since fn,k are uniformly bounded in L1 and L∞ (for fixed k), this is
equivalent to the statement that, for all k ≥ 0, we have

(12) lim
a→+∞

sup
n≥1

∫
|t|≥a
|ϕn(Σ∗nt)|1|Σ∗nt|≤kdt = 0.

DEFINITION 1.1. [Mod-ϕ convergence] If µ is a probability measure on Rd with characteristic function ϕ,
Xn is a sequence of Rd-valued random variables with characteristic functions ϕn, and if the properties H1, H2,
H3 hold, we say that there is mod−ϕ convergence for the sequence Xn.

We observe that mod-ϕ convergence will hold when H1 is true and we have
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• H2’ There exists a sequence of linear automorphisms An ∈ GLd(R), with inverses Σn = A−1
n ,

such that Σn converges to 0, and there exists a continuous function Φ : Rd → C such that for
arbitrary k > 0

(13) ϕn(t) = Φ(t)ϕ(A∗nt)(1 + o(1))

uniformly for t such that |Σ∗nt| ≤ k.

THEOREM 1.2. [Local limit theorem for mod-ϕ convergence] Suppose that mod−ϕ convergence holds for
the sequence Xn. Then we have

|det(An)|E[ f (Xn)]→
dµ

dm
(0)

∫
Rd

f (x)dx,

for all continuous functions with compact support. Consequently we also have

(14) |det(An)|P[Xn ∈ B]→ dµ

dm
(0)m(B).

for relatively compact Borel sets B ⊂ Rd with m(∂B) = 0, or in other words for bounded Jordan-measurable sets
B ⊂ Rd.

The proof relies on the following result from harmonic analysis:

THEOREM 1.3 (see [8]). Suppose f : Rd → R is a continuous function with compact support. Then for
each η > 0 we can find two integrable functions g1, g2 : Rd → R such that

(1) ĝ1, ĝ2 have compact support,
(2) g2 ≤ f ≤ g1,
(3)

∫
Rd(g1 − g2)(t) dt ≤ η.

PROOF. We first assume that f is continuous, bounded, integrable and that f̂ has compact support;
using Theorem 1.3, the case of a general continuous function with compact support will follow easily.
We write

[ f (Xn)] =
∫

Rd
f (x)dµn(x)

where µn is the law of Xn. Applying the Parseval formula transforms this into

[ f (Xn)] =
1

(2π)d

∫
Rd

ϕn(t) f̂ (−t) dt.

By the linear change of variable t = Σ∗ns, we get

E[ f (Xn)] = (2π)−d|det(Σn)|
∫

Rd
ϕn(Σ∗ns) f̂ (−Σ∗ns) ds.

Now fix k so that the support of f̂ is contained in the ball of radius k; we then have

E[ f (Xn)] = (2π)−d|det(Σn)|
∫
|Σ∗ns|≤k

ϕn(Σ∗ns) f̂ (−Σ∗ns) ds.

The integrand converges pointwise to ϕ(s) f̂ (0) according to the assumption H2. The condition H3 of
uniform integrability then implies the convergence in L1. One can see this quickly in this case: for any
ε > 0, and for any a > 0 large enough, we have∫

|s|>a
|ϕn(Σ∗ns)1|Σ∗ns|≤k f̂ (−Σ∗ns)| ds ≤ ‖ f̂ ‖∞

∫
|s|>a
|ϕn(Σ∗ns)1|Σ∗ns|≤k| ds < ε

for all n by (12). On |s| ≤ a, the pointwise convergence is dominated by ‖ f̂ ‖∞1|s|≤a, hence∫
|s|≤a

ϕn(Σ∗ns)1|Σ∗ns|≤k f̂ (−Σ∗ns) ds→ f̂ (0)
∫
|s|≤a

ϕ(s)ds.

For a large enough, this is f̂ (0)
∫

ϕ, up to error ε, hence we get the convergence∫
|Σ∗ns|≤k

ϕn(Σ∗ns) f̂ (−Σ∗ns) ds→ f̂ (0)
∫

Rd
ϕ(s)ds.

Finally, this leads to

|det(An)|[ f (Xn)]→ (2π)−d f̂ (0)
∫

Rd
ϕ(s)ds =

dµ

dm
(0)

∫
Rd

f (s)ds,
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which concludes the proof for f integrable and with f̂ with compact support. Now if f is continuous
with compact support, we use Theorem 1.3: by linearity, we can assume f to be real-valued, and then,
given η > 0 and g2 ≤ f ≤ g1 as in the approximation theorem, we have

|det(An)|E[g2(Xn)] ≤ |det(An)|E[ f (Xn)] ≤ |det(An)|E[g1(Xn)],

and hence

|det(An)|E[g2(Xn)]−
dµ

dm
(0)

∫
g2(x)dx

− dµ

dm
(0)

∫
(g1 − g2)(x)dx ≤ |det(An)|E[ f (Xn)]−

dµ

dm
(0)

∫
f (x)dx

and

|det(An)|E[ f (Xn)]−
dµ

dm
(0)

∫
f (x)dx ≤

|det(An)|E[g1(Xn)]−
dµ

dm
(0)

∫
g1(x)dx +

dµ

dm
(0)

∫
(g1 − g2)(x)dx

and hence

lim sup
n

∣∣∣|det(An)|E[ f (Xn)]−
dµ

dm
(0)

∫
f (x)dx

∣∣∣ ≤ η

which proves the result since η > 0 is arbitrary. The proof of (14) is performed in standard ways.
�

It can happen that dµ/dm(0) = 0. We can overcome this by the following:

PROPOSITION 1.4. [Mod-ϕ convergence and shift of the mean] Let d ≥ 1 be an integer, and let (Xn) be a
sequence of Rd-valued random variables such that there is mod−ϕ convergence with respect to the linear maps
An. Let α ∈ Rd be arbitrary, and let αn ∈ Rd be a sequence of vectors such that

(15) lim
n→+∞

Σnαn = α,

for instance αn = Anα. Then the sequence Yn = Xn − αn satisfies mod-ψ convergence with parameters An for
the characteristic function

ψ(t) = ϕ(t)e−it·α.

In particular, for any continuous function f on Rd with compact support, we have

lim
n→+∞

|det(An)|E[ f (Xn − αn)] =
dµ

dm
(α)

∫
Rd

f (x)dx,

where µ is the probability measure with characteristic function ϕ, and for any bounded Jordan-measurable subset
B ⊂ Rd, we have

(16) lim
n→+∞

|det(An)|P[Xn − αn ∈ B] =
dµ

dm
(α)m(B).

PROOF. This is elementary: ψ is of course integrable and since

E[eitYn ] = ϕn(t)e−it·αn ,

we have E[eiΣ∗nt·Yn ] = ϕn(Σ∗nt)e−it·Σnαn , which converges locally uniformly to ψ(t) by our assump-
tion (15). Since the modulus of the characteristic function of Yn is the same, at any point, as that of
Xn, Property H3 holds for (Yn) exactly when it does for (Xn), and hence mod-ψ convergence holds. If
h = dµ/dm, the density of the measure with characteristic function ψ is g(x) = h(x + α), and therefore
the last two limits hold by Theorem 1.2. �
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2. Application to random matrices and the Riemann zeta function

This general local limit theorem surprisingly applies to large variety of situations such as the clas-
sical Stone-Feller local limit theorem for sums of independent and identically distributed random vari-
ables in the domain of attraction of a stable distribution, the winding number for the planar Brownian
motion, as well as many other situations (see [8] and [20] for more arithmetic examples). The next
examples deal with the objects studied in this lecture.

We first start with the characteristic polynomial of random unitary matrices, which corresponds to
the case d = 2. The results of the previous chapter tell us that An(t) = (

log n
2 )1/2diag(t1, t2); ϕ is the

characteristic function of the standard Gaussian distribution. Last we are (this is the result of Keating
and Sanith) in the situation of H2’ with

ϕn(t) = ϕ(A∗nt)Φ(t)(1 + o(1))

for any fixed t, as n goes to infinity, where Φ(t) =
G(1+ it1−t2

2 )G(1+ it1+t2
2 )

G(1+it1)
. With a little more analysis

similar to the one used in Chapter 1 for the Barnes function ([11]), we can obtain uniform estimates (see
[20])

|ϕn(t)| ≤ C|Φ(t)ϕ(A∗nt)|
for all t such that |t| ≤ n1/6, where C is an absolute constant. This immediately gives the uniform
integrability for ϕn(Σ∗nt)1|Σnt|≤k since |Σ∗nt| is only of logarithmic size with respect to n. In other words,
we have checked H3, and hence there is mod-ϕ convergence.

We can thus state for random unitary matrices:

PROPOSITION 2.1. Let us note µn for the Haar probability measure on the unitary group Un. Then we have

lim
n→+∞

|det(An)|µn(g ∈ Un; log det(1− g) ∈ B) =
m(B)

(2π)d/2

for any bounded Jordan-measurable set B ⊂ C

This can be viewed as a random matrix analogue of Ramachandra. Next we take a look at a similar
problem but for the stochastic zeta function. The computations are very similar to those done in the
first chapter with the difference that here we do not restrict ourselves to the modulus (hence we work
with d = 2 but the computations are similar so we do not repeat them and refer the reader to [8] for
more details).

We recall the finite products finite products Yn = ∏p≤n(1 −
Xp√

p ) where the Xp are i.i.d random
variables uniformly distributed on the unit circle. The random variables Zn are then defined as minus
the logarithm of Yn, (taken along its principal branch defined as log(1) = 0). So

Zn = − ∑
p≤n

log
(

1−
Yp√

p

)
= ∑

p≤n
∑
k

1
k

(
Xp√

p

)k
.

Then we can show that

ϕn(t) = E[exp(it · Zn)] = ∏
p≤n

2F1

(
1
2
(it1 + t2),

1
2
(it1 − t2); 1;

1
p

)
,

where t = (t1, t2) ∈ R2, t · x = t1x1 + t2x2 is the inner product in R2 and 2F1 denotes the Gauss
hypergeometric function. Straightforward estimates (see [20] for details) then give

(1) |ϕn(t)| ≤ c(t) exp(− 1
16 (log log n)|t|2), where c is a non-decreasing function (in fact one can

take a constant);
(2) ϕn(

√
2

log log n t)→ exp(− 1
2 |t|2).

The conditions of Theorem 1.2 are fulfilled and hence we have
log log n

2
P [Zn ∈ B]→ 1

2π
m(B).

for any bounded Jordan measurable set B ⊂ C. This is the analogue of the Ramachandra conjecture for
the stochastic zeta function.

Based on the random matrix analogy, we can make the following conjecture:
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CONJECTURE 2.2. [Quantitative density of values of ζ(1/2 + it)] For any bounded Borel subset B ⊂ C

with boundary of measure 0, we have

lim
T→+∞

1
2 log log T

T
m
(
u ∈ [0, T] | log ζ(1/2 + iu) ∈ B

)
=

m(B)
2π

,

where m(·) denotes the Lebesgue measure on C.

The point is that the following much weaker estimate of the characteristic function of log ζ(1/2+ it)
suffices to prove this:

THEOREM 2.3. If for all k > 0 there exists Ck ≥ 0 such that

(17)
∣∣∣ 1
T

∫ T

0
exp(it · log ζ(1/2 + iu))du

∣∣∣ ≤ Ck
1 + |t|4(log log T)2

for all T ≥ 1 and t with |t| ≤ k, then Conjecture 2.2 holds.

These statements illustrate that the method developed in this chapter can be considered as a new
method of potential interest in any number theoretical problem dealing with sets of zero density.

59





CHAPTER 4

Appendix

1. Classical Techniques

In this appendix, we present the results the way they are usually presented in random matrix theory
textbooks on the CUE. The notation might differ from those in the main text. As usual we assume that
Weyl’s integration formula is known.

We introduce some extra notation to be consistent with the literature.

S(x) =
sin(πx)

πx
, SN(x) =

sin(Nx/2)
sin(x/2)

,

as well as
KN(x, y) = SN(x− y), K(x, y) = S(x− y).

We recall the following basic facts about Vandermonde determinants

∆(x1, · · · , xN) = det (xj−1
k )16j,k6N

= ∏
16j,k6N

(xk − xj).

Then we observe that

∏
16j,k6N

∣∣∣eiθj − eiθk
∣∣∣2 =

∣∣∣∆(liθ1 , · · · , liθN )
∣∣∣2.

LEMMA 1.1 (Transposing). Let ϕj and ψK be measurable functions. Then the following holds

det (φj−1(xk))16j,k6N det (ψj−1(xk))16j,k6N

= det

(
N

∑
n=1

φn−1(xj)ψn−1(xk)

)
16j,k6N

.

PROOF. Follows from: ∀A, B complex matrices of size N × N we havedet(A) = det(AT) and
det(A)det(B) = det(AB). �

Now we give an alternative formula for the Haar measure

∏
16j<k6N

∣∣∣eiθk − eiθj
∣∣∣2 = det (SN(θk − θj))16j<k6N .

To see it, we apply the transposing lemma to

φj(θk) = eijθk , ψj(θk) = e−ijθk .

We note that
N

∑
n=1

ei(n−1)θ =
eiNθ − 1
eiθ − 1

=
eiNθ/2

eiθ/2
sin(Nθ/2)
sin(θ/2)

= ei(N−1)θ/2SN(θ).

This implies that ∣∣∣∆(eiθ1 , · · · , eiθN )
∣∣∣2 = det(eiN(θ1+···+θN)2SN(θ1 · · · θN))

= det(SN(θj − θk)).

(Factor eiNθj/2 from the jth line and e−iNθk/2 from the kth column and note that the product is 1).
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If we formally write the Haar measure dXN (for functions which only depend on conjugacy classes),
then

dXN = det (SN(θj − θk))16j<k6N
dθ1 · · · dθN

(2π)N N!
.

Another useful lemma is the following result.

LEMMA 1.2 (Andreirf’s lemma). For any interval J, and integrable functions φj and ψj, we have

1
N!

∫
JN
· · ·

∫
JN

det(φj(θk))det(ψj(θk))dθ1 · · · dθN

= det
(∫

J
φj(θ)ψj(θ)dθ

)
.

Note how n integrals in the LHS become just one integral on the RHS.

PROOF. Recall that if X = (xjk) then

det X = ∑
σ∈Sn

sgn(σ)
N

∏
j=1

xj,σ(j).

Thus, we may write ∫
JN

det(φj(θk))det(ψj(θk))d~θ

=
∫

JN ∑
σ∈Sn

sgn(σ)
N

∏
j=1

φj(θσ(j)) ∑
τ∈Sn

sgn(τ)
N

∏
k=1

ψk(θτ(k))d~θ

(a)
=
∫

JN ∑
σ,τ

sgn(τ)
N

∏
j=1

φj(θσ(j))
N

∏
k=1

ψk(θσ(τ(k)))d~θ

(b)
=
∫

JN ∑
σ,τ

sgn(τ)
N

∏
j=1

φj(θσ(j))
N

∏
k=1

ψτ−1(k)(θσ(k))d~θ

=
∫

JN ∑
σ,τ

sgn(τ)
N

∏
j=1

φj(θσ(j))ψτ−1(j)(θσ(j))d~θ

(c)
=
∫

JN ∑
σ,τ

sgn(τ)
N

∏
j=1

φj(θσ(j))ψτ(j)(θσ(j))d~θ

= ∑
σ,τ

sgn(τ)
N

∏
j=1

∫
J

φj(θ)ψτ(j)(θ)dθ

= N! ∑
τ

sgn(τ)
N

∏
j=1

∫
J

φj(θ)ψτ(j)(θ)dθ

= N! det
(∫

J
φj(θ)ψτ(j)(θ)dθ

)
,

where (a) follows by letting τ → σ2 with σ fixed, (b) since a ∈ G (a group), so Ta : G → G such that
x 7→ ax and k→ τ−1k is a bijection, and (c) because τ → τ−1 is a bijection. �

We note that the same proof leads to the more general result

1
N!

∫
JN

N

∏
i=1

f (θi)det(φj(θk))det(ψj(θk))dθ1 · · · dθN = det
(∫

J
f (θ)φj(θ)ψτ(j)(θ)dθ

)
.

LEMMA 1.3 (Gaudin’s lemma). Let f be a measurable map and J an interval such that

∀x, y
∫

J
f (x, θ) f (θ, y)dθ = C f (x, y)
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where C is a constant. Assume further that ∫
J

f (x, x)dx = D

then ∫
J

det
M×M

( f (θj, θk))dθM = (D− (M− I)C) det
(M−1)×(M−1)

f (θj, θk).

EXAMPLE 1.4. Take f (x, y) = SN(x, y) and interval J = [0, 2π]. Then

D =
∫

J
SN(0)dθ = 2πN.

We have the following∫ 2π

0
SN(θj − θ)SN(θ − θk)dθ = 2πSN(θk − θj) ⇒ C = 2π,

as well as ∫ 2π

0
det

N×N
(SN(θj − θk))dθN = 2π det

(N−1)×(N−1)
SN(θk − θj).

Assuming successively Gaudin’s lemma we have∫
[0,2π]N−n

det
N×N

(SN(θj − θk))dθn+1 · · · dθN = (N − n)!(2π)N−n det
n×n

(SN(θj − θk)).

We note the following remark. Let f : Rn → R be a suitable test function. Then

∫
U(N)

∑
J⊂{1,··· ,N}

f (θj1 , · · · , θjn)dXU(N) = E

 ∑
J⊂{1,··· ,N},J={j1,··· ,jn}

f (θj1 , · · · , θjn)

 .

By Gaudin’s lemma we have that this is equal to

=
1

(2π)nn!

∫
[0,2π]N−n

f (θ1, · · · , θn) det
n×n

(SN(θj − θk))dθn+1 · · · dθN .

PROOF OF GAUDIN’S LEMMA.

det
M×M

f (θj, θk) = ∑
σ∈SM

sgn(σ)
M

∏
j=1

f (θj, θσ(j)).

We consider two cases: σ(M) 6= M and σ(M) = M. In the former we have∫
J

M

∏
j=1

f (θj, θσ(j))dθM =
M−1

∏
j=1, σ(j) 6=M

f (θj, θσ(j))
∫

J
f (θσ−1(M), θM) f (θM, θσ(M))dθ

=
M−1

∏
j=1, σ(j) 6=M

f (θj, θσ(j))CF(θσ−1(M), θM)

For σ ∈ SM such that σM 6= M we can construct σ′ ∈ SM−1 as follows

σ′(j) =
{

σ(j) if σ(j) 6= M
σM if σ(j) = M

thus the above is equal to

= C
M−1

∏
j=1

f (θj, θσ′(j)).

Clearly each permutation σ′ can be obtained from M− 1 permutations of SM and sgn(σ′) = − sgn(θ).
Thus we have∫

J
∑

σ∈SM , σ(M) 6=M
sgn(σ)

M

∏
j=1

f (θj, θσ(j))dθM = −(M− 1)C ∑
σ′∈SM−1

(sgn(σ′))
M

∏
j=1

f (θj, θσ′(j))

= −(M− 1)C det
(M−1)×(m−1)

f (θj, θk).
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Now we go case σ(M) = M which yields∫
J

M

∏
j=1

f (θj, θσ(j))dθM =
M−1

∏
j=1, σ(j) 6=M

f (θj, θσ(j))
∫

J
f (θσ−1(M), θM) f (θM, θσ(M))dθ

= D
M−1

∏
j=1, σ(j) 6=M

f (θj, θσ(j))F(θσ−1(M), θM).

This implies that ∫
J

M

∏
j=1

f (θj, θσ(j))dθM = D ∑
σ′∈SM−1

sgn(σ′)
M−1

∏
j=1

f (θj, θσ′(j))

= D det
(M−1)×(M−1)

f (θj, θk)

Putting both cases together yields the lemma. �

As an application we give the classical pair correlation computation which historically played an
important role. As before

θ̃j =
N
2π

θj.

We want to compute the following expression for suitable test functions (to be determined by the
reader):

QN( f ) =
∫

U(N)
∑
j<k

f (θ̃j − θ̃k)dXU(N).

Gaudin’s lemma implies that

QN( f ) =
∫
[0,2π]2

f (θ̃1 − θ̃2)det
2×2

(
N SN(θ1 − θ2)

SN(θ1 − θ2) N

)
dθ̃1dθ̃2

(2π)22!

=
1
2

∫
[0,2π]2

f (θ1 − θ2)det
2×2

(
1
N

SN

(
2π(θ1 − θ2)

N

))
dθ1dθ2

=
1
2

∫
[0,N]2

f (θ1 − θ2)

[
1−

(
SN(2π(θ1 − θ2)/N)

N

)2
]

dθ1dθ2.

We make the change of variables u = θ1 and v = θ1 − θ2 so that

QN( f ) =
∫
[−N,N]

f (v)

[
1−

(
SN(2π(θ1 − θ2)/N)

N

)2
]
(N − |v|)dv,

where the last term comes from max(v, 0) ≤ u ≤ min(N, N − v). We have already seen that

lim
N→∞

1
N

SN

(
2πv
N

)
= S(v)

and this implies that

1
N

QN( f ) →
N→∞

1
2

∫ ∞

−∞
f (v)

[
1−

(
sin(πv)

πv

)2
]

dv.

Now, it follows that

1
N

∫
U(N)

∑
j 6=k

f (θ̃j − θ̃k)dXU(N) →N→∞

∫ ∞

−∞
f (v)

[
1−

(
sin(πv)

πv

)2
]

dv.

It is the same as what one expect to hold for the zeros of ζ(s) on the critical line if RH is true (Mont-
gomery’s conjecture).
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2. Beta-Gamma algebra and uniform vectors

First recall that the Gamma function is defined by

Γ(α) =
∫ ∞

0
tα−1e−tdt

for α > 0 (or Re(α) > 0). An integration by parts shows that

Γ(α + 1) = αΓ(α)

and since Γ(1) = 1 we then have Γ(n) = (n− 1)! when n is an integer. We also have Stirling’s formula

n! ∼
√

2πe−nnn+1/2

as n→ ∞.

DEFINITION 2.1. A Gamma random variable with parameter α > 0 noted γα has density given by

P(γa ∈ dt) =
tα−1e−t

Γ(α)
1R+(t)dt.

A Beta random variable with parameters a > 0 and b > 0 and noted Ba,b has density

P(Ba,b ∈ dt) =
Γ(a + b)
Γ(a)Γ(b)

ta−1(1− t)b−11[0,1](t)dt

LEMMA 2.2. The following statements hold.
(1) One has

E[einγa ] =
1

(1− in)a .

(2) If X is exponential with mean 1/γ with γ > 0 then

E[einX ] =
1

λ− in
.

Let Sn be the unit sphere in Rn, i.e. Sn = {x ∈ Rn| ‖x‖ = 1}. The mapping P such that

Rn\{0} →]0, ∞[×Sn

with

u 7→
(
‖u‖ ,

u
‖u‖

)
is a homeomorphism. For A measurable, we define σn(A) = nλn(Ã) where λn is the Lebesgue measure
in Rn and Ã is

Ã = {ru|r ∈ [0, 1], u ∈ A}
σn defines the surface/area measure (or uniform measure) on Sn. For g nonnegative Borel measurable
on Sn, ∫

Sn
gdσn = n

∫
‖x‖61

g
(

x
‖x‖

)
dλn(x).

In particular,

σn(Sn) = nVn =
nπn/2

Γ( n
2 + 1)

=
2πn/2

Γ( n
2 )

,

where Vn is the volume of the unit ball. Moreover, for any Borel measurable≥ 0 and integrable function
f on Rn we have ∫

Rn
f dλn =

∫
R+

∫
Sn

rn−1 f (ru)drdσn(u).

In spherical coordinates u = (u1, · · · , un)

u1 = sin φ1

u2 = cos φ1 sin φ2

...
un = cos φ1 cos φ2 · · · sin φn−1
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with φj ∈ [−π/2, π/2] and φn−1 ∈ (π, π). The differential element is

dσn = cosn−2φ1 · · · cos φn−2dφ1 · · · dφn−1.

COROLLARY 2.3. Let X1, · · · , Xn be iid N (0, 1) random variables. Then

R =
√

x2
1 + · · ·+ x2

n

and

U =
X
R

, X = (X1, · · · , Xn)

are independent and U is uniformly distributed on the sphere Sn.

PROOF. Use the above integral

E[ f (R, U)] =
∫

Rn
f
(

r,
x
r

)
exp

(
−1

2

√
x2

1 + · · ·+ x2
n

)
dx1 · · · dxn√

(2π)n

=
∫

R+

∫
Sn

f (r, u)
e−r2/2

(2π)n/2 rn−1drdσn(u)

Since the densities split up, we have the independence. �

PROPOSITION 2.4. Let Za be a Gamma variable with parameter a > 0 and let Za,b be a Beta variable with
parameters a > 0 and b > 0.

(1) The following identity holds in law

(Za, Zb)
law
= (Za,bZa+b, (1− Za,b)Za+b)

all variables on the left hand side are independent as well as tose on the RHS.
(2) We also have the identity in law

Za,b+c
law
= Za,bZa+b,c

(3) Let h ∈N and X1, · · · , Xh be h independent N (0, 1) variables. We note

Rh :=

(
h

∑
j=1

X2
j

)1/2

Then
R2

h
law
= 2Zh/2.

PROOF. Let f be any bounded Borel function defined on R+.

E[ f (Za,bZa+b, (1− Za,b)Za+b)]

=
∫ 1

0

∫ ∞

0
dxdy f (xy, (1− x)y)

Γ(a + b)
Γ(a)Γ(b)

xa−1(1− x)b−1ya+b−1e−y

Γ(a + b)

=
1

Γ(a)Γ(b)

∫ ∞

0

∫ ∞

0
f (z, t)za−1e−ztb−1e−tdzdt

= E[ f (Za, Zb)]

by the change of variables z = xy and t = (1 − x)y. This proves the first part. The second part is
equivalent to showing

Za+b+cZa,b+c
law
= Za+b+cZa,bZa+b,c,

where Za+b+c is independent of the other variables. (Technically this (i.e. multiplying with Za+b+c) is

illegal. Ex: Σ1Σ2
law
= Σ1 does not imply Σ2 = 1.) But we know from part 1 that

Za+b+cZa,b+c
law
= Za, and Za+b+cZa+b,c

law
= Za+b.

Hence it is equivalent to showing that

Za
law
= Za+bZa,b,
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which is true (from part 1). This proves part 2. What is X2
1 in law? Let f be Borel and bounded

E[ f (X2
1)] =

∫ ∞

−∞
f (x2)e−x2/2 dx√

2π

= 2
∫ ∞

0
f (x2)e−x2/2 dx√

2π

=
u=x2

2
∫ ∞

0
f (u)e−u/2 du√

2π2x
= E[ f (2Z1/2)]

Hence

E[einR2
n ] = E[einX2

i ]h = E[e2inZ1/2 ]h =
1

(1− 2in)h/2

but 1/(1− 2in)h/2 is the characteristic function of 2Zh/2, this implies that R2
n

law
= 2Zh/2 and therefore

part 3 is proved. �

It follows from the proposition that X2
1 +X2

2
law
= exp(1/2), density 1

2 e−1/2dx. Furthermore, let (Zh)h≤n
be independent standard complex Gaussian random variables then

Z
‖Z‖ =

 Z1√
Z2

1 + · · ·+ Z2
n

, · · · ,
Zn√

Z2
1 + · · ·+ Z2

n


is uniformly distributed on S n

C .

THEOREM 2.5 (Poincaré’s theorem). Fix h ∈ N and let n > 0. Let Y = (Y(n)
1 , · · · , Y(n)

h ) be uniformly
distributed on Sn. Then

√
n(Y(n)

1 , · · · , Y(n)
h )

law→
n→∞

(X1, · · · , Xh),

where X1, · · · , Xh are independent N (0, 1) variables.

PROOF. We know from the previous Corollary (1.9) that

(Y(n)
1 , · · · , Y(n)

h )
law
=

1√
2Zh/2

(X1, · · · , Xh),

√
n(Y(n)

1 , · · · , Y(n)
h )

law
=

√
n√

2Zh/2
(X1, · · · , Xh).

Now, from the expression of the characteristic function of the Gamma variables of parameter α > 0, it
follows that

2Zh/2
law
= 2Z̃(1)

1/2 + · · ·+ 2Z̃(h)
1/2

where Z̃(i)
1/2 are independent Gamma variables with parameter 1/2. Moreover,

E[Z̃(i)
1/2] =

1
2

The law of large numbers gives
2Zh/2

h
→ 1, a.s.

and therefore √
n√

2Zn/2
→ 1, a.s.

�
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3. Distribution of elements of random unitary matrices U ∈ U(n)

Clearly the entries of Haar distributed random matrices are not independent. We already know that
the first column is uniformly distributed on the unit sphere Sn

C. The Haar measure is invariant under
left and right translations, and since permutation matrices are in U(n) we deduce that each column and
row has the same distribution (in fact, each element).
Let U = (Uij)1≤i,j≤n then the Uij all have the same distribution. If u1 is the first column of U1

U1
law
=

(
X1

|X| , · · · ,
Xn

|X|

)
where X1, · · · , Xn are independent standard complex Gaussian random variables and

|X| =
√
|X1|2 + · · ·+ |Xn|2.

THEOREM 3.1. Each entry of U is distributed like eiθ√B1,n−1 where σ is uniformly distributed on [0, 2π]
and B1,n−1 is a Beta variable with parameters (1, n− 1) and which is independent of θ. The convention is B1,0 = 1
almost surely.

In other words, each entry has density

n− 1
π

(1− n2)n−2rdrdθ, r ∈ [0, 1], θ ∈ [0, 2π]

PROOF. We know that each element has the same distribution as
X1

|X| , X1
law
= eiθ

√
2R.

Let f : [0, 1]→ R be bounded. One has

E

[
f
(

X1

|X|

)]
= E

[
f
( √

2Z1√
2Z1 + 2Zn−1

)]
= E

[
f

( √
2Z1,n−1Zn√

2Z1,n−1Zn + (1− Z1,n−1)Zn

)]
= E[ f

√
Z1,n−1].

We also have

P[
∣∣Uij

∣∣ 6 r] = P[
√

B1,m−1 6 r]

= P[B1,m−1 6 r2]

=
∫ r2

0

Γ(n)
Γ(n− 1)

(1− x)n−2dx

= 1− (1− r2)n−1.

The density of |Uij| is 2r(1− r2)n−2. �

COROLLARY 3.2. One has √
nUij

law→
n→∞

X + iY

where X and Y are independent N (0, 1/2) variables.

PROOF. We compute Uij = eiθ√B1,n−1. We note that

P[
√

n
∣∣Uij

∣∣2 6 x] = 1−
(

1− x
n

)n−1
→ 1− e−x

so √
nUij

law→
n→∞

eiθ
√

R

where R is a standard exponential variable. But

eiθ
√

R =
1√
2

eiθ
√

2R.

�
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We remark that one can also compute the moments of
∣∣Uij

∣∣. For n ≥ 1, we have

E[
∣∣Uij

∣∣2k
] = E[Bk

1,n−1] =
Γ(n)

Γ(n− 1)

∫ 1

0
xk(1− x)n−2dx

and we know that ∫ 1

0
ta−1(1− t)b−1dt =

Γ(a)Γ(b)
Γ(a + b)

which imples that

E[
∣∣Uij

∣∣2k
] =

Γ(n)
Γ(n− 1)

Γ(k + 1)Γ(n− 1)
Γ(k + n)

=
Γ(n)Γ(k + 1)

Γ(k + n)

=

(
n + k− 1

n− 1

)−1

DEFINITION 3.3. For n ≥ 2 and a1, · · · , an > 0, let Dir(a1, · · · , an) be the Dirichlet distribution on the
simplex {

(x1, · · · , xn) ∈ [0, 1]n :
n

∑
k=1

xk = 1

}
with density

Γ(a1 + · · ·+ an)

Γ(a1) · · · Γ(an)

n

∏
k=1

xak−1
k .

If a1 = a2 = · · · = an = a, it is called the Dirichlet distribution with parameter a and is noted Dir(a). If
a1 = a2 = · · · = an = 1, then this is the uniform distribution on the simplex.

LEMMA 3.4. Let (Zai ) with 1 ≤ i ≤ k be k independent gamma variables with respective parameters ai.
Then

k

∑
i=1

Zai

is independent of (
Z′aj
≡

Zaj

∑k
i=1 Zai

)
16j6k

,

and this vector above is uniformly distributed on the simplex.

PROOF. Since
k

∑
j=1

Zaj

∑k
i=1 Zai

= 1

it suffices to show that ∑k
i=1 Zai is independent of(

Zaj

∑k
i=1 Zai

)
16j6k−1

.

Let f : R+ → R, g : Rk−1
+ → R be bounded Borel functions. We want to compute

E

[
f

(
k

∑
i=1

Zai

)
g(Z′a1

, · · · , Z′ak−1
)

]
.

We make a change of variables
y1 = x1

yk
...

yk−1 =
xk−1

yk
yk = x1 + · · ·+ xk

⇔



x1 = y1yk
...

xk−1 = yk−1yk

xk = yk −
k−1
∑

i=1
yiyk
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Thus we have

E

[
f

(
k

∑
i=1

Zai

)
g(Z′a1

, · · · , Zak−1
′)

]
=
∫

Rk
+

f (x1 + · · ·+ xk)g
(

x1

x1 + · · ·+ xk
, · · · ,

xk−1
x1 + · · ·+ xk

)

×
xa1−1

1 · · · xak−1
k

Γ(a1) · · · Γ(ak)
e−(x1+···+xn)dx1 · · · dxk

=

(∫
R+

dyk f (yk)
ya1+···+ak−1

Γ(a1 + · · ·+ ak)

)∫
Rk−1
+

g(y1, · · · , yk−1)y
a1−1
1 · · · yak−1−1

k−1

(
1−

k−1

∑
i=1

yi

)ak−1


× Γ(a1 + · · ·+ ak)

Γ(a1) · · · Γ(ak)
1{yj∈[0,1], ∑k−1

j=1 yj61}dy1 · · · dyk−1

= E

[
f

(
k

∑
i=1

Za
i

)]
E[g(Z′a1

, · · · , Z′ak−1
)],

and this ends the proof. �

COROLLARY 3.5. The joint distribution (|U1,1|2, · · · , |Un,1|2) is uniform on the unit simplex.

PROOF. The proof comes from ∣∣Ui,j
∣∣2 law

=
Z(j)

1

∑n
k=1 Z(k)

1

,

and the result follows. �

4. Hypergeomertic functions

See Special functions by Andrews, Askey and Rog. Let a ∈ C for n > 0 we have (a)n = a(a +
1) · · · (a + n− 1) and (a)0 = 1. One notes that

(a)n =
Γ(a + n)

Γ(a)
.

DEFINITION 4.1. We formally define a hypergeometric function as

pFq

(
a1, · · · , ap
b1, · · · , bq

, x
)
=

∞

∑
n=0

(a1)n · · · (ap)n
(b1)n · · · (bq)n

xn

n!
,

where a1, · · · , ap, b1, · · · , bq ∈ C but not in {0, 1, · · · }.

THEOREM 4.2. The series pFq converges absolutely for all x if p ≤ q; for |x| < 1 if p = q + 1; and it
diverges for all x 6= 0 if p > q + 1.

PROOF. See Special functions by Andrews, Askey and Roy. �

As a special case of interest to us:

DEFINITION 4.3. The hypergeometric function 2F1(a, b, c; x) is defined by the series
∞

∑
n=0

(a)n(b)n
n!(c)n

xn

n!
,

for |x| < 1, and by analytic continuation elsewhere.

THEOREM 4.4. The series q+1Fq with |x| < 1 converges absolutely if Re(Σbi − Σai) > 0. It converges
conditionally, except for x = 1, if −1 < Re(Σbi − Σai) ≤ 0 and diverges otherwise.

PROOF. It follows from
(a1)n · · · (aq+1)n
(b1)n · · · (bq)n

∼ ∏ Γ(bi)

∏ Γ(ai)
n∑ ai−∑ bi−1.

The estimate follows from
Γ(x)
Γ(y)

lim
n→∞

(x)n
(y)n

ny−x = 1.

�
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We remark that one may also use Stirling’s formula for the proof

Γ(x) ∼
√

2πxx−1/2e−x

where Re(x)→ ∞.

THEOREM 4.5. If Re(c− a− b) < 0 then

lim
x→1−

2F1(a, b, c; x)

(1− x)c−a−b =
Γ(c)Γ(a + b− c)

Γ(a)Γ(b)
,

for c = a + b

lim
x→1−

2F1(a, b, c; x)
log( 1

1−x )
=

Γ(a + b)
Γ(a)Γ(b)

.

THEOREM 4.6. Let Sn denote the nth partial sum of 2F1(a, b, c, 1). For Re(c− a− b) < 0

Sn ∼
Γ(c)na+b−c

Γ(a)Γ(b)Γ(a + b− c)
,

and for the case c = a + b

Sn ∼
Γ(c)

Γ(a)Γ(b)
log n.

THEOREM 4.7 (Gauss). For Re(c− a− b) > 0 we have
∞

∑
n=0

(a)n(b)n
n!(c)n

= 2F1(a, b, c, 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

Let us give a few examples which show that many elementary functions have representations as
hypergeometric functions.

• log(1 + x) = x2F1(1, 1, 2,−x) for |x| < 1
• (1− x)−a = 1F0(a, x), for |x| < 1
• arctan(x) = x2F1(

1
2 , 1

2 , 3
2 , x2),

• sin(x) = x0F1(
3
2 ,− x2

4 )

• cos(x) = x0F1(
1
2 ,− x2

4 )
• ex = 0F0(x).

In many situations one can analytically continue these functions.

5. Central limit theorem and Berry-Esseen bounds

For the CLT, we refer to Feller An introduction to probability theory and its applications, volume 2.

THEOREM 5.1. Let X1, X2, · · · be independent random variables such that E[Xk] = 0, var(Xk) = σ2
k and

put s2
n = σ2

1 + · · · σ2
n . Assume that for each t > 0 we have

1
s2

n

n

∑
ki=1

E[|Xk|21|Xk |>tSn ]→ 0

as n→ ∞. Then
X1 + · · ·+ Xn

n
law→N (0, 1)

as n→ ∞.

It is often easier to check Lyapunov condition for some δ > 0

lim
n→∞

1
s2+δ

n

n

∑
k=1

E[|Xk|2+δ] = 0.

Check
1
s2

n

n

∑
k=1

E[|Xk|21|Xk |>tSn ] 6
1

tδs2+δ
n

n

∑
k=1

E[|Xk|2+δ].
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Now we present a multidimensional version of Lindberg’s CLT. We refer to Probability Theory, an analytic
view by D. Stroock page 85. We assume that (Xn) is a sequence of independent random vectors with
values in Rl such that

E[|Xn|2] < ∞, Xn =

 X1
n

...
Xl

n

 , |Xn|2 = |X1
n|2 + · · ·+ |Xl

n|2.

Further, we assume that

E[Xn] =

 E[X1
n]

...
E[Xl

n]

 = 0,

and the covariance matrix is stricly positive

cov(Xn) = (E[Xi
nX j

n])16i,j6l

that is,

∀U =

 U1
...

Un

 , Ut(cov Xn)U > 0 U 6= 0.

We set Sn = ∑n
k=1 Xk and Cn := cov(Sn) = ∑n

k=1 cov(Xn).

Σn = (det Cn)
1/(2`), S1

n =
Sn

Σn
.

THEOREM 5.2. Assume that A := limn→∞Cn/Σ2
n exists, and assume that ∀ε > 0:

lim
n→∞

1
Σ2

n

n

∑
k=1

E[|Xk|21|Xk |≥εΣn ] = 0.

Then the vector Sn converges in law to a Gaussian vector with mean zero and covariance matrix A.

Question: what is the speed or rate of convergence of CLT (d = 1)?

THEOREM 5.3. Let X1, · · · , Xn be independent such that E[X)j] = 0, E|Xj|2 < ∞. Put σ2
j = E[X2

j ] and

s2
n =

n

∑
j=1

σ2
j , Fn(x) = P

(
s−1

n

n

∑
j=1

Xj 6 x

)
.

Define

Ln =
1
s3

n

n

∑
k=1

E[|Xj|3].

Then there exist two constants A and C, not depending on n, such that the following uniform and non-uniform
estimates holds

sup
x

∣∣∣∣Fn(x)− 1√
2π

∫ x

−∞
e−t2/2dt

∣∣∣∣ 6 ALn,

and ∣∣∣∣Fn(x)− 1√
2π

∫ x

−∞
e−t2/2dt

∣∣∣∣ 6 CLn

(1 + |x|)3 .

These are called the Berry-Essen inequalities. As a reference, check Petrov’s Limit theorems of Proba-
bility.
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6. Rank one matrices

Let (e1, · · · , en) be the canonical basis of Kn, where K = R or C. Let A be a matrix such that
rank(A) = 1. When can it be diagonalized?
rank(A) = 1: all columns c1, · · · , cn of A are linearly dependent: thus A can be written as A =
(v1U, · · · , vnU), where U is a column vector, U 6= 0, and V = (v1, · · · , vn)T ∈ Kn, U = (u1, · · · , un)T .
Then we see A = UVT , and if we note A = (aij) where aij = uivj

A2 = UVTUVT =
n

∑
i=1

uivi︸ ︷︷ ︸
tr(A)

UVT = tr(A)A.

Let P(X) = X2 − tr(A)X, P(A) = 0.

(1) tr(A) 6= 0. In this case, P is a polynomial of degree 2 with simple roots, hence it is the minimal
polynomial of A, P(X) = X(X − tr(A)) and since A 6= tr(A)1n, P is indeed the minimal
polynomial. Thus A can be diagonalized.
The eigenspace associated with the eigenvalue 0 is H = ker(A)

AX = 0⇔ UVTX = 0⇔
(

n

∑
i=1

vixi

)
U = 0,

hence

0 =
n

∑
i=1

vixi

is the equation of the hyperplane H. The eigenspace associated with Tr(A) is spanned by U:

AU = UVTU = tr(A)U.

Let ( f2, · · · , fn) be a basis of H, then in the basis (U, f2, · · · , fn) the matrix A has the form
a 0 · · · 0

0 0 · · ·
...

... · · · . . .
...

0 · · · · · · 0

 ,

with a = Tr(A).
(2) Tr(A) = 0. In this case A2 = 0, 0 is the only eigenvalue of A and since A 6= 0, we have that A

cannot be diagonalized. ker(A) = H is a hyperplane but Tr(A) = 0 implies that U ∈ ker(A)

AV = UVTT =

(
n

∑
i=1

v2
i

)
U

from which we consider the cases
• K = R then AV = ‖v‖2U, v 6= 0 implies ‖v‖ 6= 0 which then gives us v /∈ ker(A). We

choose a basis (U, f ′3, · · · , f ′n, V). In this basis A has the form
0 0 · · · a

0 0 · · ·
...

... · · · . . .
...

0 · · · · · · 0


where a = ‖v‖2.
• K = C: here ∑ v2

i can be zero. Let us keep (U, f ′3, · · · , f ′n) as a basis of ker(A). We know
that Aej = cj = vjU for all j. Since A 6= 0, then there exists j0 ∈ {1, · · · , n} such that
Aej0 6= 0. Now consider the basis (U, f ′3, · · · , f ′n, ej0). In this basis the matrix A has the
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form 
0 0 · · · a

0 0 · · ·
...

... · · · . . .
...

0 · · · · · · 0


where a = vj0 .

EXAMPLE 6.1. Let e, m with ‖e‖ = ‖m‖ = 1 be two vectors of Cn such that e 6= m. There exists a unique
reflection r such that r(e) = m. Next,

rank(id−r) = 1
and one can easily check that the matrix of (id−r) is given by

1
1− γ̄

(m− e)(m− e)T , γ = 〈m, e〉 .

LEMMA 6.2. Let A be a matrix of rank one. Then det(1 + A) = 1 + Tr(A).

PROOF. Use the simpler forms of A above. �

7. A priori estimates for unitary matrices

Let us fix ε > 0. The goal of this section is the proof that the event E := E0 ∩ E1 ∩ E2 ∩ E3 holds
almost surely under the Haar measure on the space of virtual isometries, for

E0 = {θ(1)0 6= 0} ∩ {∀n ≥ 1, νn 6= 0} ∩ {∀n ≥ 1, 1 ≤ k ≤ n, µ
(n)
k 6= 0}

E1 = {∃n0 ≥ 1, ∀n ≥ n0, |νn| ≤ n−
1
2+ε}

E2 = {∃n0 ≥ 1, ∀n ≥ n0, 1 ≤ k ≤ n, |µ(n)
k | ≤ n−

1
2+ε}

E3 = {∃n0 ≥ 1, ∀n ≥ n0, k ≥ 1, n−
5
3−ε ≤ θ

(n)
k+1 − θ

(n)
k ≤ n−1+ε}.

REMARK 7.1. In [4] an analogous event was defined to avoid small values of the dimension n where the
behavior of the eigenvalues can be more erratic. This event will serve the same purpose, although we have chosen
the exponents more carefully to sharpen our results.

We begin by showing that for any fixed basis of Cn, the coefficients of a uniform random vector on
the unit sphere are almost surely O(n−

1
2+ε) for any ε > 0.

LEMMA 7.2. Suppose v1, ..., vn ∈ Cn is an orthonormal basis and x ∈ Cn, ‖x‖ = 1 is chosen uniformly
from the unit sphere. Then if we write x = x1v1 + · · ·+ xnvn, we have bound

P(|xj|2 > δ) = O(exp(−δn/6)),

for all δ > 0 and j = 1, ..., n.

REMARK 7.3. We will prove this statement for deterministic vectors v1, . . . , vn ∈ Cn. However, by con-
ditioning, one deduces that the result remains true if the vectors v1, . . . , vn are random, as soon as they are
independent of x.

PROOF. Let us assume δ < 1, since the probability is zero otherwise. Let φ1, ..., φn be iid uniform
random phases in S1 and let e1, ..., en be independent standard exponential random variable. Then, it is
well-known that x has the same distribution as the random vector y = y1v1 + · · ·+ ynvn where

yj = φj

√
ej

e1 + · · ·+ en
.

Now,
P(e1 + · · ·+ en <

n
2
) ≤ en/2E[exp(−e1 − · · · − en)] ≤ en/22−n ≤ e−n/6,

so

P(|xj|2 > δ) ≤ P(ej >
δn
2
) + O(exp(−n/6))

= O(exp(−δn/6)),

since δ ∈ (0, 1). �
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From this estimate, we deduce the following bound on the coordinates of the eigenvectors f (n)k .

LEMMA 7.4. Let ε > 0. Then, almost surely, we have

sup
1≤j,`≤n

|〈 f (n)j , e`〉|2 = O(n−1+ε)

and
sup

1≤j,`≤n
E
[
|〈 f (n)j , e`〉|2|A

]
= O(n−1+ε),

where the implied constant may depend on ε and (um)m≥1.

PROOF. Consider the vector f (n)j for each fixed j and n. By the invariance by conjugation of the
Haar measure on U(n), this eigenvector is, up to multiplication by a complex of modulus 1, a uniform
vector on the unit sphere of Cn. More precisely, if ξ ∈ C is uniform on the unit circle, and independent
of f (n)j , then ξ f (n)j is uniform on the unit sphere. One deduces that for all n, j, `,

P(|〈 f (n)j , e`〉|2 > n−1+ε) = O(exp(−nε/6)).

Using the Borel-Cantelli lemma gives the first result. Moreover,

E[|〈 f (n)j , e`〉|8/ε] =
∫ ∞

0
P[|〈 f (n)j , e`〉|2 ≥ δε/4]dδ

.
∫ ∞

0
e−nδε/4/6dδ

=
∫ ∞

0
e−zε/4/6d(z/n4/ε) = O(n−4/ε).

We deduce:

P
(

E[|〈 f (n)j , e`〉|8/ε|A] ≥ n4− 4
ε

)
≤ n

4
ε−4E

[
E[|〈 f (n)j , e`〉|8/ε|A]

]
= n

4
ε−4E[|〈 f (n)j , e`〉|8/ε] = O(n−4).

By the Borel-Cantelli lemma, for all but finitely many n ≥ 1, 1 ≤ j, ` ≤ n,

E[|〈 f (n)j , e`〉|8/ε|A] ≤ n4− 4
ε .

By the Hölder inequality applied to the conditional expectation, for ε sufficiently small,

E[|〈 f (n)j , e`〉|2|A] ≤
(

E[|〈 f (n)j , e`〉|8/ε|A]
)ε/4

≤ n−1+ε. �

Another consequence of Lemma 7.2 is the following:

PROPOSITION 7.5. The events E0, E1, E2 all hold almost surely.

PROOF. We apply Lemma 7.2 to the decomposition

xn+1 =
n

∑
j=1

µ
(n)
j f (n)j + νnen+1,

which gives

P(|µ(n)
k |

2 > n−1+ε) = O(exp(−nε/6))

so, in particular,

∑
n≥1

∑
1≤k≤n

P(|µ(n)
k |

2 > n−1+ε) = O(1).

Therefore, by the Borel-Cantelli lemma, almost surely only a finite number of the events {|µ(n)
k |

2 >

n−1+ε} hold simultaneously. A similar argument controls the coefficients νn. �
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Before we can control E3, we require some estimates on the eigenvalues of a Haar unitary random
matrix. Recall that if un is distributed according to the Haar measure, then one can define, for 1 ≤ p ≤
n, the p-point correlation function ρ

(n)
p of the eigenangles, as follows: for any bounded, measurable

function φ from Rp to R,

E

 ∑
1≤j1 6=···6=jp≤n

φ(θ
(n)
j1

, . . . , θ
(n)
jp

)


=
∫
[0,2π)p

ρ
(n)
p (t1, . . . , tp)φ(t1, . . . , tp)dt1 . . . dtp.

Moreover, if the kernel K is defined by

K(t) :=
sin(nt/2)

2π sin(t/2)

then the p-point correlation function can be given by

ρ
(n)
p (t1, ..., tn) = det

(
K(tj − tk)

)p
j,k=1 .

Let us first show that the gaps between eigenvalues cannot be asymptotically much larger than
average.

LEMMA 7.6. Let I ⊆ [0, 2π) be Lebesgue measurable. Then

P(all of the eigenvalues of un are in I) ≤ exp(−|I
c|

2π
n).

PROOF. We recall the Andreiev-Heine identity [26], which says that

P(all of the eigenvalues of un are in I) = det MI

where MI is an n× n matrix with entries

MI
j,k =

∫
I

exp(i(j− k)t)
dt
2π

for j, k between 1 and n. Note that the matrix
(
exp(i(j− k)t)

)n
j,k=1 is hermitian and positive, MI is also;

likewise MIc
. Moreover, by computing the entries of MI + MIc

, one checks that this sum is the identity
matrix: hence, MI , MIc

have the same eigenvectors and, if we denote by (τj)1≤j≤n the eigenvalues
of MIc

, then (1− τj)1≤j≤n are the eigenvalues of MI . The eigenvalues of each matrix must lie in the
interval [0, 1], as otherwise one of the eigenvalues of the other matrix would be negative. Now,

det MI =
n

∏
j=1

(1− τj) ≤ exp(−
n

∑
j=1

τj) = exp(−Tr MIc
) = exp(− Ic

2π
n)

as was to be shown. �

Note that the previous lemma applies to all measurable subsets, although we will only need to
apply it to intervals.

Next we control the gaps between eigenvalues from below.

LEMMA 7.7. Suppose t1, ..., tp ∈ I lie in an interval of length |I| = δ ≤ 1/n. Then we have the estimate

ρ
(n)
p (t1, ..., tp) = Op(δ

2p−2n3p−2).

PROOF. We have
ρ
(n)
p (t1, . . . , tp) = det

(
K(ti − tj)

)p
i,j=1 .

The Taylor series for the sine function shows that for |t| ≤ 1/n,

K(t) =
n

2π

(
1− 1

24
(n2 − 1)t2 + O(n4t4)

)
.

Thus, we have:

ρ
(n)
p (t1, . . . , tp) =

np

(2π)p det
(
1− 1

24 (n
2 − 1)(ti − tj)

2 + O(n4(ti − tj)
4)
)p

i,j=1

76



Let A denote the p× p matrix in the last display, let 1 denote the column vector of all ones and let wj
denote the column vector whose ith entry is

(wj)i = 1− Aij =
1
24

(n2 − 1)(ti − tj)
2 + O(n4(ti − tj)

4).

Then by multilinearity and the inclusion-exclusion principle,

det A = ∑
σ⊂[p]

(−1)|σ| det
(
v1 · · · vp

)
, where vj =

{
wj, j ∈ σ

1, otherwise

Clearly each term is zero if more than one of the columns is equal to 1, so we get

det A = (−1)p−1
p

∑
j=1

det Mj + (−1)p det M

where M is the matrix with columns w1, ..., wp and Mj is M with the jth column replaced with 1. Then
in the expansion of each determinant we can bound each term by Op((n2δ2)p−1), and the conclusion
follows. �

PROPOSITION 7.8. The event E3 holds almost surely.

PROOF. Fix n ≥ 1. The probability that two adjacent eigenvalues of un differ by at least 2δ is
bounded above by the probability that one of the parts of the partition

(0, δ) ∪ (δ, 2δ) ∪ · · · ∪ (b2πδ−1cδ, b2πδ−1 + 1cδ)
contains no eigenvalue. This, by Lemma 7.6, is bounded by

b2πδ−1 + 1c exp(−δn/2π).

Now we let δ = n−1+ε and apply the Borel-Cantelli lemma to show that at most a finite number of the
un have gaps larger than n−1+ε.

Next, we see by Lemma 7.7 that the probability that two adjacent eigenvalues of un differ by at most
δ ≤ 1/n is bounded by ∫∫

|t1−t2|<δ
ρ
(n)
2 (t1, t2) dt1 dt2 = O(n4δ3)

which, when we specialize δ = n−
5
3−ε, is O(n−1−ε); summing over n and applying the Borel-Cantelli

lemma shows that these events occur at must a finite number of times as well. �
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